
ALGEBRAIC AND TOPOLOGICAL REFLEXIVITY
OF SPACES OF LIPSCHITZ FUNCTIONS

FERNANDA BOTELHO and JAMES JAMISON

We establish algebraic and topological reflexivity for sets of isometries between
scalar valued Lipschitz function spaces.

AMS 2010 Subject Classification: Primary 47B33; Secondary 47B37.

Key words: Lipschitz function spaces, algebraic reflexivity, topological reflexivity,
isometry group.

1. INTRODUCTION

Given a Lipschitz function f between two metric spaces (X, d) and (Y, D),
there exists a positive constant K such that

(∗) D(f(x0), f(x1)) ≤ Kd(x0, x1), for every x0 and x1 in X.

The infimum of all numbers K for which the inequalities in (∗) hold is called
the Lipschitz constant of f, and is denoted by L(f),

L(f) = sup
x0 6=x1

D(f(x0), f(x1))
d(x0, x1)

.

If L(f) < 1 then f is said to be a contraction. A bijective function f is a
lipeomorphism if both f and f−1 satisfy a Lipschitz condition (∗). Given a
compact metric space (X, d) we denote by Lip(X) the Banach space of all com-
plex valued Lipschitz functions on X with the norm ‖f‖ = max{‖f‖∞, L(f)}.
Throughout this paper 1X denotes the function constantly equal to 1 on X.

In [13], the authors give a characterization of linear isometries between
Banach spaces of scalar valued Lipschitz functions.

Theorem 1.1 (cf. [13]). Let T : Lip(X) → Lip(Y ) be a linear isometry.
(1) If T (1X) is a contraction, then there exist Y0, a closed subset of Y ,

a surjective Lipschitz map ϕ : Y0 → X with L(ϕ) ≤ max{1,diam(X)}, and a
function τ ∈ Lip(Y ) with ‖τ‖ = 1 and |τ(y)| = 1, for all y ∈ Y0, such that

T (f)(y) = τ(y)f(ϕ(y)) for all f ∈ Lip(X) and y ∈ Y0.
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(2) If T is surjective and T (1X) is a nonvanishing contraction, then there
exist τ ∈ Lip(Y ), with |τ(y)| = 1 for all y ∈ Y, and ϕ a lipeomorphism from
Y onto X with L(ϕ) ≤ max{1,diam(X)} and L(ϕ−1) ≤ max{1,diam(Y )},
such that

T (f)(y) = τ(y)f(ϕ(y)) for all f ∈ Lip(X) and y ∈ Y.

We use these representations to study algebraic and topological proper-
ties of classes of isometries between Lipschitz function spaces. Specifically we
address the issue of algebraic reflexivity and topological reflexivity of subsets of
the surjective isometries between Lip(X) and Lip(Y ). The notion of algebraic
reflexivity has been a topic of considerable interest and we refer the reader to
the work done in the papers [3, 4] and references [5] through [8].

The restriction concerning T (1X) stated in the Theorem 1.1 is essential.
If T (1X) is not a contraction, then isometries need not be weighted composition
operators, see Weaver [14]. This distinguishes Lipschitz spaces from many
classical function spaces where isometries are weighted composition operators
and hence have the disjointness preserving property, see [1] and [9]. We give an
example below showing that even the simplest disjointness preserving weighted
composition operator fails to be an isometry. We first discuss some interesting
examples that motivated the problems addressed in this paper.

Examples. Let X = [0, 1
3 ] and Y = [0, 1]. We define

ϕ(x) =

{
x if 0 ≤ x ≤ 1

3 ,

−1
2(x− 1) if 1

3 ≤ x ≤ 1

and T : Lip(X) → Lip(Y ) given by T (f)(y) = f(ϕ(y)). The operator T is an
non-surjective isometry. We observe that given f ∈ Lip(X), T (f) restricted
to the interval [0, 1

3 ] is identically equal to f and on [13 , 1], ϕ compresses the
interval by a factor less than 1. These conditions are sufficient to ensure that
T is an isometry, since τ is constant and equal to 1. This is not necessarily
true for nonconstant Lipschitz functions τ. In fact, let X = Y = [0, 1] and
S(f)(y) = eiyf(y). We show that T1 is not an isometry. We just consider
f(x) = ix. Clearly, ‖f‖ = 1, but T1(f)(y) = eiy (iy) has the Lipschitz constant
greater than 1, L(T1(f)) > 1. We notice that T (1X) is a contraction however
the Lipschitz constant of T1(1X) is equal to 1.

We also have that for X = [0, 1
2 ], Y = [0, 1] and ϕ(y) = y2

2 , the ope-
rator T2(f)(y) = f(ϕ(y)) is not an isometry, since for f(x) = −(1 − x)2, we
have ‖f‖ = 2 and ‖T2(f)‖ < 2. This example shows that the conditions in
the Theorem 1.1 are not sufficient for a weighted composition operator to be
an isometry.
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2. ALGEBRAIC REFLEXIVITY OF LIPSCHITZ SPACES

In this section we consider classes of operators from Lip(X) into Lip(Y ),
which are locally given by surjective isometries. We first set some preliminary
notation to be used throughout this paper. We denote by L(Lip(X),Lip(Y ))
the set of all bounded linear operators between Lip(X) and Lip(Y ) and by
G(Lip(X),Lip(Y )) the set of all surjective linear isometries between Lip(X)
and Lip(Y ). We also set

G∗(Lip(X),Lip(Y )) =

= {T ∈ G(Lip(X),Lip(Y )) : T (1X) is a nonvanishing contraction}.
If X = Y we denote G∗(Lip(X),Lip(Y )) simply by G∗(Lip(X)).

Definition. An operator T ∈ L(Lip(X), Lip(Y )) is locally in G∗(Lip(X),
Lip(Y )) if and only if for every f ∈Lip(X) there exists Sf ∈G∗(Lip(X),Lip(Y ))
such that T (f) = Sf (f). The set G∗(Lip(X), Lip(Y )) is algebraically reflexive
if and only if every operator locally in G∗(Lip(X), Lip(Y )) is also in G∗(Lip(X),
Lip(Y )).

Proposition 2.1. Let X and Y be compact metric spaces. If T is locally
in G∗(Lip(X),Lip(Y )), then there exist a closed subset Y0 of Y , a Lipschitz
function τ ∈ Lip(Y0) with |τ(y)| = 1, for all y ∈ Y0, and a lipeomorphism ϕ
from Y0 onto X such that

T (f)(y) = τ(y) f(ϕ(y)) for every f ∈ Lip(X) and y ∈ Y0.

Proof. Theorem 1.1 (1) asserts the existence of τ ∈ Lip(Y ) and the
existence of an onto map ϕ ∈ Lip(Y0, X) (with Y0 a closed subset of Y ) such
that for every f ∈ Lip(X) and y ∈ Y0

(1) T (f)(y) = τ(y) f(ϕ(y)).

For every f ∈ Lip(X), Theorem 1.1 (2) asserts the existence of τf and the
existence of a lipeomorphism ϕf in Lip(Y, X), such that for every y ∈ Y

(2) T (f)(y) = τf (y) f(ϕf (y)).

Given ξ ∈ Y0 with ϕ(ξ) = x0 we define the following Lipschitz function on X

f(z) = max
{
0, 1− 1

2d(z, x0)
}

.

We observe that ‖f‖ = ‖f‖∞ = 1, since L(f) ≤ 1
2 . Furthermore, x0 is the

unique point in X at which f attains the value 1. Therefore, for every y ∈ Y0,
equations (1) and (2) imply

(3) τ(y) f(ϕ(y)) = τf (y) f(ϕf (y)).

In particular, for y = ξ we obtain τ(ξ) = τf (ξ) f(ϕf (ξ)) and hence f(ϕf (ξ)) =
1. This implies that ϕf (ξ) = x0. If there exists ξ1 ∈ Y0, with ϕ(ξ1) = x0 then
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ϕf (ξ1) = x0. We conclude that ξ = ξ1 since ϕf is a injective. Therefore, ϕ
is also injective. We have shown that ϕ : Y0 → X is Lipschitz and bijective.
The compactness of Y0 implies that ϕ is a homeomorphism. We need to show
that ϕ−1 is also Lipschitz. For a given z ∈ Y0, we define the Lipschitz function
on X, given by fz(x) = d(x, ϕ(z)). Equation (3) implies that d(ϕ(y), ϕ(z)) =
d(ϕf (y), ϕ(z)), and hence ϕf (z) = ϕ(z). For y 6= z we have

d(ϕ(y), ϕ(z))
d(y, z)

=
d(ϕf (y), ϕ(z))

d(y, z)
≥

d(ϕf (y), ϕf (z))
d(y, z)

.

We use the fact that ϕf is a lipeomorphism to assure the existence of a positive
number Kf for which

d(ϕf (y), ϕf (z))
d(y, z)

≥ Kf for every y ∈ Y \ {z}.

We set Ỹ0 = {(y1, y2) ∈ Y0 × Y0 : y1 6= y2}, and βỸ0 denotes the Stone-Čech
compactification of Ỹ0. Now we consider the function F : βỸ0 → R given by

F (y1, y2) =

{
d(ϕ(y1),ϕ(y2))

d(y1,y2) if (y1, y2) ∈ Ỹ0,

β(F )(w) if w ∈ β(Ỹ0) \ Ỹ0,

where β(F )(w) represents the unique extension of F, restricted to Ỹ0, to the
point w. If 0 is in the range of F , then there exists ξ ∈ β(Ỹ0) \ Ỹ0 so that
F (ξ) = 0. Therefore, there exists a net {(yα, zα)} converging to ξ and so
that F (yα, zα) converges to zero. There exists a subnet of {zα}, also denoted
by {zα}, which converges to a point in X, say z0. Previous considerations
imply F (y, z0) > Nz0 > 0, for every y 6= z0 and thus F (yα, zα) > 1

2Nz0 ,
for sufficiently large α. This contradiction implies the existence of a positive
number N such that for every y and z with y 6= z we have

d(ϕ(y), ϕ(z))
d(y, z)

> N.

Therefore, ϕ is a lipeomorphism between Y0 and X. �

Theorem 2.1. Let X and Y be compact metric spaces.
(1) If there exists an injective real valued function f ∈ Lip(X), then

G∗(Lip(X),Lip(Y )) is algebraically reflexive.
(2) If Y is an n-dimensional compact and connected manifold without

boundary, then G∗(Lip(X),Lip(Y )) is algebraically reflexive.

Proof. We consider an operator T, locally in G∗(Lip(X),Lip(Y )). We
assume that there exists an injective real valued function f on X. Without
loss of generality we suppose that f is positive. Proposition 2.1 asserts the
existence of a closed subset Y0 of Y , a Lipschitz function τ ∈ Lip(Y0) with
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|τ(y)| = 1, for all y ∈ Y0, and a lipeomorphism ϕ from Y0 onto X such that,
for every y ∈ Y0,

T (f)(y) = τ(y) f(ϕ(y)).
On the other hand, there exists a surjective isometry Sf so that Sf (1X) is a
non-vanishing contraction and

T (f)(y) = τ(y) f(ϕ(y)) = Sf (f)(y).

Theorem 1.1 asserts the existence τf ∈ Lip(Y ) with |τf (y)| = 1, for all
y ∈ Y, and a lipeomorphism ϕf such that

Sf (f)(y) = τf (y)f(ϕf (y)) for all y ∈ Y.

Therefore, for y ∈ Y0, τf (y)f(ϕf (y)) = τ(y)f(ϕ(y)) and f(ϕf (y)) = f(ϕ(y)).
Furthermore, since f is injective, we have ϕ(y) = ϕf (y). Since ϕf is a lipeo-
morphism and ϕ is onto, we have Y0 = Y . We now show that T is surjective.
Given g ∈ Lip(Y ), we define h(x) = τ(ϕ−1(x))g(ϕ−1(x)). The function h is
Lipschitz and T (h)(y) = g(y). This completes the proof of (1). Now we assume
that Y is a connected and compact n-manifold with empty boundary. Proposi-
tion 2.1 and Theorem 1.1 imply that Y is homeomorphic to Y0, a closed subset
of Y . This also implies that Y0 is a compact and connected n-manifold without
boundary. Hence Y0 has empty interior in Y , equivalently Y0 is both open and
closed in Y . The connectedness assumption on Y0 implies that Y = Y0. �

Remark. Closed and bounded subsets of R, satisfy the condition stated
in Theorem 2.1 (1). Therefore, G∗(Lip(X),Lip(Y )) is algebraically reflexive
for X a compact subset of R and Y an arbitrary compact metric space.

We also determine the algebraic reflexivity of a class of periodic isome-
tries. We consider a compact metric space (X, d) and n ∈ N. We define

Pn(Lip(X)) = {T ∈ G∗(Lip(X)) : Tn = IdLip(X)}.
We first derive a straightforward representation for isometries in Pn(Lip(X)),
based in the Theorem 1.1,

Lemma 2.1. If T ∈ Pn(Lip(X)) then there exist ϕ a lipeomorphism
on X, τ ∈ Lip(X) a Lipschitz map such that ϕn = IdX , τ(x)τ(ϕ(x)) · · ·
τ(ϕn−1(x)) = 1, and T (f)(x) = τ(x)f(ϕ(x)), for all x ∈ X.

Proof. If T is an isometry in Pn(Lip(X)), it can be represented as:

(4) T (f)(x) = τ(x)f(ϕ(x)) for all f ∈ Lip(X) and x ∈ X,

with τ and ϕ as given in the Theorem 1.1 (2). We have that Tn(f)(x) =
τ(x)τ(ϕ(x)) · · · τ(ϕn−1(x))f(ϕn(x)) = f(x), for every f ∈ Lip(X). If there
exists x such that ϕn(x) 6= x, then the Lipschitz function f(z) = d(z, ϕn(x))
would not satisfy Equation (4). This shows that ϕn = IdX . We also have that
Tn1X(x) = τ(x)τ(ϕ(x)) · · · τ(ϕn−1(x)) = 1, for every x ∈ X. �
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Definition. A linear operator T ∈ L(Lip(X)) is locally a surjective pe-
riodic isometry if and only if for every f ∈ Lip(X) there exists a surjective
isometry Tf such that Tf (1X) is a nonvanishing contraction, Tn

f = Id, for some
n ∈ N, and T (f) = Tf (f).

Proposition 2.2. Let X be a compact metric space and f be an injective
real valued Lipschitz function defined on X. If T is locally a surjective periodic
isometry then T is a surjective periodic isometry and T (1X) is a nonvanishing
contraction.

Proof. Without loss of generality we assume that f is strictly positive.
Theorem 1.1 asserts that there exist X0 a closed subset of X and Lipschitz
maps τ and ϕ such that

T (f)(x) = τ(x)f(ϕ(x)) for all x ∈ X0.

Since T is locally a surjective periodic isometry, there exists Tf ∈ Pn(Lip(X))
such that T (f) = Tf (f). We consider the representation for Tf as stated in
Theorem 1.1

Tf (f)(x) = τf (x)f(ϕf (x)) for all x ∈ X.

Therefore, f(ϕ(x)) = f(ϕf (x)) which implies that ϕ(x) = ϕf (x) for all x ∈ X0.
Therefore, X = X0 and ϕ is a periodic lipeomorphism, i.e., ϕn = IdX . Previous
considerations also imply that τ(x) = τf (x) for all x ∈ X. Consequently,
T (g)(x) = τf (x)g(ϕf (x)), for every g ∈ Lip(X) and x ∈ X. We have shown
that T is a surjective periodic isometry. Since T (1X) = T1X (1X) we have that
T (1X) is a nonvanishing contraction. �

Remark. The previous results also imply that Pn(Lip(X)) is an alge-
braically reflexive subset of G∗(Lip(X)).

3. TOPOLOGICAL REFLEXIVITY OF SUBSETS
OF THE ISOMETRY GROUP

We consider a pair of spaces of scalar valued Lipschitz functions defined
on compact metric spaces and we study topological properties of isometries
between these spaces. We start with a definition of topological surjective isome-
try. For related concepts see [2], [5], [7] or [11].

Definition. We say that an operator T ∈ L(Lip(X),Lip(Y )) is a topo-
logically surjective isometry if and only if T (1X) is a contraction and for every
f ∈ Lip(X) there exists a sequence {T f

n }n, in G∗(Lip(X),Lip(Y )), such that
T (f) = limn T f

n (f).

Lemma 3.1. If T is a topologically surjective isometry in L(Lip(X),
Lip(Y )), then T is an isometry.
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Proof. Given f ∈ Lip(X), let {T f
n } be a sequence of surjective isometries

such that
lim

n→∞
‖Tn(f)− T (f)‖ = 0.

Therefore |‖Tn(f)‖−‖T (f)‖| = |‖f‖−‖T (f)‖| ≤ ‖Tn(f)−T (f)‖ and T is an
isometry. �

Proposition 3.1. If X is a compact metric space and Y is a compact
and connected n-manifold without boundary, then T ∈ L(Lip(X),Lip(Y )) is
surjective provided that T is a topologically surjective isometry.

Proof. For every f ∈ Lip(X) there exists T f
n a sequence of surjec-

tive isometries such that T f
n (1X) is a nonvanishing contraction and T (f) =

limn T f
n (f). Theorem 1.1 (1) asserts that there exist Y0 a closed subset of Y ,

ϕ : Y0 → X a surjective Lipschitz function with L(ϕ) ≤ max{1,diam(X)},
τ ∈ Lip(Y ), with ‖τ‖ = 1, |τ(y)| = 1 for all y ∈ Y0, such that

T (f)(y) = τ(y) f(ϕ(y)) for all y ∈ Y0.

Theorem 1.1 (2) also asserts the existence of a sequence of Lipchitz functions
of norm 1, {τ f

n} and a sequence of lipeomorphisms ϕf
n such that L(ϕf

n) ≤
max{1,diam(X)}, L((ϕf

n)−1) ≤ max{1,diam(Y )}, and

T f
n (g)(y) = τ f

n (y) g(ϕf
n(y)),

for all g ∈ Lip(Y ) and y ∈ Y. We claim that ϕ is injective. We suppose
there exist y0 and y1 in Y0 such that y0 6= y1 and ϕ(y0) = ϕ(y1). We set
f(z) = d(z, ϕ(y0)) ∈ Lip(X). For this function we associate the sequence
{T f

n }n as described before. Hence

(5) lim
n

τ f
n (y)f(ϕf

n(y)) = τ(y)f(ϕ(y)) for all y ∈ Y0.

This implies that

lim
n

d(ϕf
n(y), ϕ(y0)) = d(ϕ(y), ϕ(y0)) for all y ∈ Y0.

In particular,

lim
n

d(ϕf
n(y0), ϕ(y0)) = lim

n
d(ϕf

n(y1), ϕ(y0)) = 0.

Therefore,

lim
n

d
(
ϕf

n(y0), ϕ
f
n(y1)

)
d(y0, y1)

= 0.

We choose n0 so that

d
(
ϕf

n0(y0), ϕf
n0(y1)

)
d(y0, y1)

<
1

2 max{diam(Y ), 1}
,
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which implies that

max{diam(Y ), 1} ≥ L((ϕf
n0

)−1) ≥ d(y0, y1)

d
(
ϕf

n0(y0), ϕ
f
n0(y1)

) > 2 max{diam(Y ), 1}.

This leads to a contradiction. Therefore, ϕ is an injective Lipschitz map from
Y0 onto X. We have that Y0 is homeomorphic to X, since X is homeomorphic
to Y. Hence Y and Y0 are homeomorphic. The assumption on Y implies that
Y = Y0. It now remains to show that ϕ−1 is also a Lipschitz function.

We assume that there exist sequences {yn} and {zn} such that yn 6= zn

and limn
d(ϕ(yn),ϕ(zn))

d(yn,zn) = 0. We choose n0 such that

d(ϕ(yn0), ϕ(zn0))
d(yn0 , zn0)

<
1

6 max{1,diam(Y )}
.

We set f(z) = τ(z) d(z, ϕ(zn0)) in Lip(X). We consider the sequence of sur-
jective isometries {T f

n }n associated with f , as stated in Theorem 1.1 (2),

T f
n (g)(y) = τ f

n (y) g(ϕf
n(y)) for every n ∈ N and g ∈ Lip(X).

In particular, we have limn ‖T f
n (f)− T (f)‖ = 0. This implies

(i) limn ‖T f
n (f)−T (f)‖∞ = 0, equivalently ‖τ f

n (·)f(ϕf
n(·))−τ(·)f(ϕ(·))‖∞

→ 0, and
(ii) limn L(T f

n (f)− T (f)) = 0.

We set Hn(w) = τ f
n (w) f(ϕf

n(w)). The statement in (i) becomes

lim
n
‖Hn(w)− d(ϕ(w), ϕ(zn0))‖∞ = 0.

Therefore, for every m,

lim
n

Hn(ym) = d(ϕ(ym), ϕ(zn0)) and lim
n

Hn(zm) = d(ϕ(zm), ϕ(zn0)).

In particular, for m = n0 we have

lim
n

Hn(yn0) = d(ϕ(yn0), ϕ(zn0)) and lim
n

Hn(zn0) = 0.

On the other hand, the statement in (ii) implies that

lim
n

|Hn(yn0)− d(ϕ(yn0), ϕ(zn0))−Hn(zn0)|
d(yn0 , zn0)

= 0,

equivalently,

lim
n

|Hn(yn0)−Hn(zn0)|
d(yn0 , zn0)

=
d(ϕ(yn0), ϕ(zn0))

d(yn0 , zn0)
.

We choose n such that
|Hn(zn0)|
d(yn0 , zn0)

<
1

6 max{1,diam(Y )}
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and
|Hn(yn0)|
d(yn0 , zn0)

<
d(ϕ(yn0), ϕ(zn0))

d(yn0 , zn0)
+

1
6 max{1,diam(Y )}

.

Therefore,

d
(
ϕf

n(zn0), ϕ(zn0)
)

d(yn0 , zn0)
<

1
6 max{1,diam(Y )}

and

d
(
ϕf

n(yn0), ϕ(zn0)
)

d(yn0 , zn0)
<

1
3 max{1,diam(Y )}

,

which implies that

d
(
ϕf

n(yn0), ϕ
f
n(zn0)

)
d(yn0 , zn0)

<
1

2 max{1,diam(Y )}
.

We now conclude that

max{1,diam(Y )} ≥ L((ϕf
n)−1) ≥ d(yn0 , zn0)

d
(
ϕf

n(yn0), ϕ
f
n(zn0)

) > 2 max{1,diam(Y )}.

This contradiction implies that
{d(ϕ(y),ϕ(z)))

d(y,z) : with y 6= x
}

is bounded below
by a positive number. Hence we define the operator S : Lip(Y ) → Lip(X)
as follows S(g)(x) = τ(ϕ−1(x)) g(ϕ−1(x)). We have T (S(g))(y) = g(y) and
S(T (f))(x) = f(x). The operator S is an isometry and T is onto. This com-
pletes the proof. �

Definition. We set G1(Lip(X),Lip(Y )) = {T ∈ G∗(Lip(X),Lip(Y )) :
T (1X) = 1Y }. We say that G1(Lip(X),Lip(Y )) is topologically reflexive when-
ever the following implication is true, cf. [6]:

If for every f ∈ Lip(X) there exists a sequence {T f
n } of isometries in

G1(Lip(X),Lip(Y )) such that T (f)= limn T f
n (f), then T ∈G1(Lip(X),Lip(Y )).

Corollary 3.1. If X is a compact metric space and Y is a compact and
connected n-manifold without boundary, then G1(Lip(X),Lip(Y )) is topologi-
cally reflexive.

Proof. If T is an isometry and f ∈ Lip(X), then there exists a sequence
T f

n in G1(Lip(X),Lip(Y )) such that T (f) = limn T f
n (f). Proposition 3.1 as-

serts that T is a surjective isometry which clearly satisfies T (1X) = 1Y and
completes the proof. �



114 Fernanda Botelho and James Jamison 10

REFERENCES

[1] J. Araujo, Linear biseparating maps between spaces of vector-valued differentiable func-
tions and automatic continuity. Adv. Math. 187 (2004), 2, 488–520.
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[13] A. Jiménez-Vargas and M. Villegas-Vallecillos, Into linear isometries between spaces of
Lipschitz functions. Houston J. Math. 34 (2008), 4, 1165–1184.

[14] N. Weaver, Lipschitz Algebras. World Scientific, 1999.
[15] E. Mayer-Wolf, Isometries between Banach spaces of Lipschitz functions. Isr. J. Math.

38 (1981), 1-2, 58–74.

Received 17 November 2010 The University of Memphis
Department of Mathematical Sciences

Memphis, TN 38152, USA
mbotelho@memphis.edu
jjamison@memphis.edu


