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We consider a hybrid Metropolis-Hastings chain on a known finite state space; its
design is based on the G method (because this method can perform some inter-
esting things, see Sections 1 and 2 and also [17]) and its analysis (the convergence
rate) is based on the G method and ergodicity coefficients. Finally, we give two
special cases of the hybrid chain, namely, when the state space is Sn, the set of
permutations of order n (e.g., the Mallows model is defined on this space), and
when this is {0, 1, . . . , h}n, h, n ≥ 1 (e.g., the Ising model is defined on {0, 1}n).
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1. G∆1,∆2 AND G∆1,∆2 IN ACTION

To design and analyze our hybrid Metropolis-Hastings chain we need to
extend certain notions and results from the ∆-ergodic theory in a more general
framework, namely, that of nonnegative matrices, and, then, to give, at least
for the ∆-ergodic theory, other results. (See mainly [17] for this section; see
[13–17] and references therein for the general ∆-ergodic theory.)

Set

Par(E) = {∆ | ∆ is a partition of E},

where E is a nonempty set. We shall agree that the partitions do not contain
the empty set.

Definition 1.1. Let ∆1,∆2 ∈ Par(E). We say that ∆1 is finer than ∆2 if
∀V ∈ ∆1, ∃W ∈ ∆2 such that V ⊆ W.

Write ∆1 � ∆2 when ∆1 is finer than ∆2.
Set

〈m〉 = {1, 2, . . . ,m}, m ≥ 1,
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Nm,n = {F | F is a nonnegative m× n matrix},
Sm,n = {F | F is a stochastic m× n matrix},

Nn = Nn,n and Sn = Sn,n.

Let F = (Fij) ∈ Nm,n. (The entries of a matrix Z will be denoted Zij .)
Let ∅ 6= U ⊆ 〈m〉 and ∅ 6= V ⊆ 〈n〉. Define the matrices

FU = (Fij)i∈U, j∈〈n〉, F V = (Fij)i∈〈m〉, j∈V , and F V
U = (Fij)i∈U, j∈V .

Definition 1.2. Let P ∈ Nm,n. We say that P is a generalized stochastic
matrix if ∃a ≥ 0, ∃Q ∈ Sm,n such that P = aQ.

Definition 1.3 ([17]). Let P ∈ Nm,n. Let ∆ ∈ Par(〈m〉) and Σ ∈ Par(〈n〉).
We say that P is a [∆]-stable matrix on Σ if PL

K is a generalized stochastic
matrix, ∀K ∈ ∆, ∀L ∈ Σ. In particular, a [∆]-stable matrix on ({i})i∈〈n〉 is
called [∆]-stable for short (({i})i∈〈n〉 := ({1}, {2}, . . . , {n})).

Definition 1.4 ([17]). Let P ∈ Nm,n. Let ∆ ∈ Par(〈m〉) and Σ ∈ Par(〈n〉).
We say that P is a ∆-stable matrix on Σ if ∆ is the least fine partition for which
P is a [∆]-stable matrix on Σ. In particular, a ∆-stable matrix on ({i})i∈〈n〉
is called ∆-stable while a (〈m〉)-stable matrix on Σ is called stable on Σ for
short. A stable matrix on ({i})i∈〈n〉 is called stable for short.

Let ∆1 ∈ Par(〈m〉) and ∆2 ∈ Par(〈n〉). Define

G∆1,∆2 = {P | P ∈ Sm,n and P is a [∆1]-stable matrix on ∆2}

(see [17] and, for an equivalent definition, [12]),

G∆1,∆2 = {P | P ∈ Nm,n and P is a [∆1]-stable matrix on ∆2},

and, if m = n,

G∆ = G∆,∆

(see [11] for an equivalent definition) and

G∆ = G∆,∆.

Let P ∈ G∆1,∆2 . Let K ∈ ∆1 and L ∈ ∆2. Then ∃aK,L ≥ 0, ∃QK,L ∈
S|K|,|L| such that PL

K = aK,LQK,L. Set

P−+ = (P−+
KL )K∈∆1, L∈∆2 , P−+

KL = aK,L, ∀K ∈ ∆1, ∀L ∈ ∆2

(see also [17]). If confusion can arise we write P−+(∆1,∆2) instead of P−+.
In this article, when we work with the operator (·)−+ = (·)−+(∆1,∆2) we
suppose, for labelling the rows and columns of matrices, that ∆1 and ∆2 are
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ordered sets, even if we omit to precise this. To give an example, let

P =

 2 3 7 0
5 0 6 1
1 0 0 2

 .

Obviously, P ∈ G∆1,∆2 , where ∆1 = ({1, 2}, {3}) and ∆2 = ({1, 2}, {3, 4}).
Further, we have

P−+ = P−+(∆1,∆2) =
(

5 7
1 2

)
.

({1, 2} and {3} are the first and the second element of ∆1, respectively; on
the basis of this order, the first and the second row of P−+ are labelled {1, 2}
and {3}, respectively. The columns of P−+ are labelled similarly.)

The next result is the main one of this section; it is a generalization of
Theorem 2.3 in [17].

Theorem 1.5. Let P ∈ G∆1,∆2 ⊆ Nm,n and Q ∈ G∆2,∆3 ⊆ Nn,p. Then
(i) PQ ∈ G∆1,∆3 ⊆ Nm,p;
(ii) (PQ)−+ = P−+Q−+.

Proof. (i) Let P ∈ G∆1,∆2 and Q ∈ G∆2,∆3 . Then ∀K ∈ ∆1, ∀U ∈ ∆2,
∀L ∈ ∆3, ∃aK,U ≥ 0, ∃AK,U ∈ S|K|,|U |, ∃bU,L ≥ 0, ∃BU,L ∈ S|U |,|L| such that
PU

K = aK,UAK,U and QL
U = bU,LBU,L.

Let K ∈ ∆1 and L ∈ ∆3. Let i ∈ K. We have∑
l∈L

(PQ)il =
∑
l∈L

∑
k∈〈n〉

PikQkl =
∑

k∈〈n〉

Pik

∑
l∈L

Qkl =
∑

W∈∆2

∑
k∈W

Pik

∑
l∈L

Qkl =

=
∑

W∈∆2

∑
k∈W

PikbW,L =
∑

W∈∆2

bW,L

∑
k∈W

Pik =
∑

W∈∆2

aK,W bW,L.

It follows that
∑
l∈L

(PQ)il only depends on constants aK,W , bW,L, W ∈ ∆2,

∀i ∈ K. Therefore, PQ ∈ G∆1,∆3 .
(ii) See the proof of (i). �

In this article, a vector x is a row vector and x′ denotes its transpose.
Set e = e(n) = (1, 1, . . . , 1) ∈ Rn, ∀n ≥ 1.

The next result is a generalization of Theorem 2.10 in [17]; it is another
main result of this section.

Theorem 1.6. Let P1 ∈ G(〈m1〉),∆2
⊆ Nm1,m2 , P2 ∈ G∆2,∆3 ⊆ Nm2,m3 ,

. . . , Pn−1 ∈ G∆n−1,∆n ⊆ Nmn−1,mn , Pn ∈ G∆n,({i})i∈〈mn+1〉
⊆ Nmn,mn+1 . Then

(i) P1P2 . . . Pn is a stable matrix ;
(ii) π = P−+

1 P−+
2 . . . P−+

n , where e′π := P1P2 . . . Pn (i.e., π = (P1P2

. . . Pn){i} for a fixed i).
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Proof. (i) By Theorem 1.5(i) and induction we have P1P2 . . . Pn ∈
G(〈m1〉),({i})i∈〈mn+1〉

. Therefore, P1P2 . . . Pn is a stable matrix. (A matrix P ∈
Nq,r is a stable matrix if and only if P ∈ G(〈q〉),({i})i∈〈r〉 .)

(ii) By (i), π = (P1P2 . . . Pn)−+. Now, (ii) follows by Theorem 1.5(ii)
and induction. �

Let P ∈ Nm,n. Define

α(P ) = min
1≤i,j≤m

n∑
k=1

min(Pik, Pjk)

(if P ∈ Sm,n, then α(P ) is called the Dobrushin ergodicity coefficient of P
([4]; see, e.g., also [6, p. 56])) and

α(P ) =
1
2

max
1≤i,j≤m

n∑
k=1

|Pik − Pjk|.

Remark 1.7 (see, e.g., [7, p. 143]). If P ∈ Sm,n, then α(P ) = 1− α(P ).
Theorem 1.6(i) can be used, e.g., to see if a finite Markov chain has a

finite convergence time (see also [17]). Below we give other applications (Theo-
rem 1.8 and Remark 1.9) – the best results of this section – of G∆1,∆2 and of
G∆1,∆2 ; they give bounds for α(P1P2 . . . Pn), where P1, P2, . . . , Pn are nonnega-
tive matrices (an interesting case is that when these matrices are sparse large
stochastic). When we study products of nonnegative matrices using G∆1,∆2

and/or G∆1,∆2 we shall refer this as the G method.

Theorem 1.8. Let P1 ∈ Nm1,m2 , P2 ∈ Nm2,m3 , . . . , Pn ∈ Nmn,mn+1 . Let
∆1 = (〈m1〉), ∆2 ∈ Par(〈m2〉), . . . ,∆n ∈ Par(〈mn〉), ∆n+1 = ({i})i∈〈mn+1〉.
Consider the matrices Ll = ((Ll)V W )V ∈∆l, W∈∆l+1

((Ll)V W is the entry (V,W )
of matrix Ll), Ul = ((Ul)V W )V ∈∆l, W∈∆l+1

, l ∈ 〈n〉, where

(Ll)V W := min
i∈V

∑
j∈W

(Pl)ijand (Ul)V W := max
i∈V

∑
j∈W

(Pl)ij ,

∀l ∈ 〈n〉, ∀V ∈ ∆l, ∀W ∈ ∆l+1. Then∑
K∈∆n+1

(L1L2 . . . Ln)〈m1〉K ≤ α(P1P2 . . . Pn) ≤
∑

K∈∆n+1

(U1U2 . . . Un)〈m1〉K .

(Since L1L2 . . . Ln and U1U2 . . . Un are 1 × |〈mn+1〉| matrices, they can be
thought as being row vectors, but above we used and below we shall use the
matrix notation for entries instead of the vector one. E.g., above the matrix
notation (L1L2 . . . Ln)〈m1〉K was used instead of the vector one (L1L2 . . . Ln)K

because, in this article, the notation AU , where A ∈ Np,q and ∅ 6= U ⊆ 〈p〉,
means something different.)
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Proof. Consider the matrices E1, F1 ∈ G∆1,∆2 , E2, F2 ∈ G∆2,∆3 , . . . , En,
Fn ∈ G∆n,∆n+1 such that E−+

l = Ll and F−+
l = Ul, ∀l ∈ 〈n〉. Since (see

Theorem 1.6)

(E1E2 . . . En){i} = (E1E2 . . . En)−+ = E−+
1 E−+

2 · · ·E−+
n = L1L2 . . . Ln

and

(F1F2 . . . Fn){i} = (F1F2 . . . Fn)−+ = F−+
1 F−+

2 · · ·F−+
n = U1U2 . . . Un,

∀i ∈ 〈m1〉, we have

(E1E2 . . . En)ij = (L1L2 . . . Ln)〈m1〉{j}

and
(F1F2 . . . Fn)ij = (U1U2 . . . Un)〈m1〉{j},

∀i ∈ 〈m1〉, ∀j ∈ 〈mn+1〉.
We choose the matrices El, Fl, l ∈ 〈n〉, such that

(El)ij ≤ (Pl)ij ≤ (Fl)ij , ∀l ∈ 〈n〉, ∀i ∈ 〈ml〉, ∀j ∈ 〈ml+1〉;

this is possible as follows. Let l ∈ 〈n〉. Let V ∈ ∆l and W ∈ ∆l+1. Let i ∈ V.

Case 1. (Pl)ij = 0, ∀j ∈ W . No problem. (We must take (El)ij = 0,
∀j ∈ W, and we can take, e.g., (Fl)ij = 0, ∀j ∈ W.)

Case 2. ∃j ∈ W such that (Pl)ij > 0. First, we construct the entries
(El)ij , j ∈ W. We take (El)ij = 0, ∀j ∈ W, if (Ll)V W = 0. (Recall that
E−+

l = Ll and (Ll)V W = 0 imply (El)ij = 0, ∀j ∈ W.) Suppose, now, that
(Ll)V W > 0. Let (Pl)ij1 , (Pl)ij2 , . . . , (Pl)ijk

be all the nonnegative entries of
(Pl)W

{i}. Suppose that (Pl)ij1 ≤ (Pl)ij2 ≤ · · · ≤ (Pl)ijk
. We know that E−+

l = Ll

and (Ll)V W ≤
k∑

t=1
(Pl)ijt . If (Ll)V W ≤ (Pl)ijk

, we take (El)ijk
= (Ll)V W and

(El)ij = 0, ∀j ∈ W , j 6= jk. Otherwise, if (Ll)V W ≤ (Pl)ijk−1
+ (Pl)ijk

, we
take (El)ijk

= (Pl)ijk
, (El)ijk−1

= (Ll)V W − (El)ijk
, and (El)ij = 0, ∀j ∈ W ,

j 6= jk−1, jk. Otherwise, if (Ll)V W ≤ (Pl)ijk−2
+ (Pl)ijk−1

+ (Pl)ijk
, we take

(El)ijk
= (Pl)ijk

, (El)ijk−1
= (Pl)ijk−1

, (El)ijk−2
= (Ll)V W −(El)ijk−1

−(El)ijk
,

and (El)ij = 0, ∀j ∈ W , j 6= jk−2, jk−1, jk. Etc. Second, we construct the
entries (Fl)ij , j ∈ W . Using the above notation, we take (Fl)ijk

= (Pl)ijk
+(

(Ul)V W −
k∑

t=1
(Pl)ijt

)
and (Fl)ij = (Pl)ij , ∀j ∈ W , j 6= jk.

Finally, by

(L1L2 . . . Ln)〈m1〉{j} = (E1E2 . . . En)ij ≤ (P1P2 . . . Pn)ij ≤
≤ (F1F2 . . . Fn)ij = (U1U2 . . . Un)〈m1〉{j}, ∀i ∈ 〈m1〉, ∀j ∈ 〈mn+1〉,
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we have∑
K∈∆n+1

(L1L2 . . . Ln)〈m1〉K ≤ α(P1P2 . . . Pn) ≤
∑

K∈∆n+1

(U1U2 . . . Un)〈m1〉K .

(We used the fact that α(P ) ≤ α(Q) if P ≤ Q (P,Q ∈ Np,q).) �

Let P ∈ Nm,n. Let ∆ ∈ Par(〈m〉) and Σ ∈ Par(〈n〉). Define

P+ = (P+
iJ)i∈〈m〉, J∈Σ, P+

iJ =
∑
k∈J

Pik, ∀i ∈ 〈m〉, ∀J ∈ Σ

(see also [15]). If confusion can arise we write P+Σ instead of P+. In this
article, when we work with the operator (·)+ = (·)+(Σ) we suppose, for la-
belling the columns of matrices, that Σ is an ordered set, even if we omit to
precise this.

Remark 1.9. (a) By Theorem 1.8 we have

b = b(P1, P2, . . . , Pn) := max
∆1=(〈m1〉),

∆2∈Par(〈m2〉),...,
∆n∈Par(〈mn〉)

∆n+1=({i})i∈〈mn+1〉

∑
K∈∆n+1

(L1L2 . . . Ln)〈m1〉K ≤

≤ α(P1P2 . . . Pn) ≤

≤ min
∆1=(〈m1〉),

∆2∈Par(〈m2〉),...,
∆n∈Par(〈mn〉)

∆n+1=({i})i∈〈mn+1〉

∑
K∈∆n+1

(U1U2 . . . Un)〈m1〉K := b(P1, P2, . . . , Pn) = b.

(b) If P1, P2, . . . , Pn are stochastic matrices, then b ≥ 1 while if P1, P2,
. . . , Pn are substochastic matrices, then it is possible that b be smaller or
equal to 1. Further, as to the products of stochastic matrices, since α(P ) ≤ 1,
∀P ∈ Sm,n, it follows that the first inequality from Theorem 1.8 (also, the
first inequality from (a)) is only interesting. This inequality can be even an
equation in some special cases. E.g., let

P =

 3
4

1
4 0

0 3
4

1
4

0 0 1

 .

If we take ∆1 = (〈3〉), ∆2 = ({1}, {2, 3}), and ∆3 = ({i})i∈〈3〉 = ({1}, {2}, {3}),
then

L1L2 =
(

0 1
4

) (
3
4

1
4 0

0 0 1
4

)
=

(
0 0 1

16

)
.
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By Theorem 1.8, 0 + 0 + 1
16 = 1

16 ≤ α(P 2). On the other hand, since

P 2 =

 9
16

6
16

1
16

0 9
16

7
16

0 0 1

 ,

we obtain α(P 2) = 1
16 by direct computation. To give other examples, we can,

e.g., use some examples from [17].
(c) Let P1 ∈ Nm1,m2 , P2 ∈ Nm2,m3 , . . . , Pn ∈ Nmn,mn+1 . Let ∆1 ∈

Par(〈m1〉), ∆2,∆′
2 ∈ Par(〈m2〉), . . . , ∆n,∆′

n∈Par(〈mn〉), ∆n+1∈Par(〈mn+1〉).
By the proof of Theorem 1.8 there are matrices E1, F1 ∈ G∆1,∆2 , E2, F2 ∈
G∆′

2,∆3
, . . . , En, Fn ∈ G∆′

n,∆n+1 with

(El)−+
KL = min

i∈K

∑
j∈L

(Pl)ij and (Fl)−+
KL = max

i∈K

∑
j∈L

(Pl)ij ,

∀l ∈ 〈n〉, ∀K ∈ ∆′
l, ∀L ∈ ∆l+1, where ∆′

1 := ∆1, such that

El ≤ Pl ≤ Fl, ∀l ∈ 〈n〉.

It follows that

E1E2 . . . En ≤ P1P2 . . . Pn ≤ F1F2 . . . Fn

and, therefore,

α(E1E2 . . . En) ≤ α(P1P2 . . . Pn) ≤ α(F1F2 . . . Fn).

Obviously, the conclusion of Theorem 1.8 is a special case of the latter sequence
of above inequalities, namely, when E1E2 . . . En and F1F2 . . . Fn are stable
matrices.

(d) By (c) we have, in particular,

P1E2 . . . En ≤ P1P2 . . . Pn ≤ P1F2 . . . Fn

and, therefore,

α(P1E2 . . . En) ≤ α(P1P2 . . . Pn) ≤ α(P1F2 . . . Fn).

Suppose that ∆2,∆3, . . . ,∆n+1 and E2, F2, E3, F3, . . . , En, Fn are as in Theo-
rem 1.8 and its proof, respectively. Further (see Theorem 1.6 and the proof of



214 Udrea Păun 8

Theorem 1.8),

P1E2 . . . En =


(P1){1}E2 . . . En

(P1){2}E2 . . . En
...

(P1){m1}E2 . . . En

=


((P1){1}E2 . . . En)−+(({1}),∆n+1)

((P1){2}E2 . . . En)−+(({2}),∆n+1)

...
((P1){m1}E2 . . . En)−+(({m1}),∆n+1)

=

=


((P1){1})−+(({1}),∆2)E

−+(∆2,∆3)
2 · · ·E−+(∆n,∆n+1)

n

((P1){2})−+(({2}),∆2)E
−+(∆2,∆3)
2 · · ·E−+(∆n,∆n+1)

n
...

((P1){m1})
−+(({m1}),∆2)E

−+(∆2,∆3)
2 · · ·E−+(∆n,∆n+1)

n

 =

=


((P1){1})+∆2L2 . . . Ln

((P1){2})+∆2L2 . . . Ln
...

((P1){m1})
+∆2L2 . . . Ln

 = P+∆2
1 L2 . . . Ln.

We also have
P1F2 . . . Fn = P+∆2

1 U2 . . . Un.

Finally, we obtain

α(P+∆2
1 L2 . . . Ln) ≤ α(P1P2 . . . Pn) ≤ α(P+∆2

1 U2 . . . Un).

Obviously, the bounds α(P+∆2
1 L2 . . . Ln) and α(P+∆2

1 U2 . . . Un) are better
than α(E1E2 . . . En) and α(F1F2 . . . Fn) from (c), respectively.

Although below we do not give applications of Remark 1.9, this could be
used to improve the convergence rate of our hybrid Metropolis-Hastings chain
from the next section.

2. OUR HYBRID METROPOLIS-HASTINGS CHAIN

We design a hybrid Metropolis-Hastings chain on a known finite state
space based on the G method because this method can perform some inter-
esting things, such as

1) to see if a finite Markov chain has a finite convergence time (see [17]
and also Section 1);

2) to see if a product of stochastic (more generally, nonnegative) matrices
is positive (see, e.g., Theorem 2.3 below; see also Theorem 1.6 (we can replace
the stochastic (more generally, nonnegative) matrices with their incidence ma-
trices));
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3) to design positive products of stochastic matrices, the latter having
certain given properties (see, e.g., this section);

4) to give bounds for the ergodicity coefficients α and α of the products
of stochastic matrices
(see also [17]) for other applications). The analysis of our hybrid Metropolis-
Hastings chain is based on the G method and ergodicity coefficients.

Definition 2.1 (see, e.g., [20, p. 80]). Let P ∈ Nm,n.
(a) We say that P is a row-allowable matrix if it has at least one positive

entry in each row.
(b) We say that P is a column-allowable matrix if it has at least one

positive entry in each column.
Below we also use notation from Theorem 1.8 and its proof (see also

Remark 1.9). Let S = 〈r〉.

Theorem 2.2. Let P1, P2, . . . , Pt ∈ Sr. Let ∆1,∆2, . . . ,∆t+1 ∈ Par(S),
∆1 = (S), ∆t+1 = ({i})i∈S . If Ll (see Theorem 1.8) is a column-allowable
matrix, ∀l ∈ 〈t〉, then P1P2 . . . Pt > 0.

Proof. Obviously, L1 > 0. It follows, by induction, that L1L2 . . . Lt > 0.
Since (see the proof of Theorem 1.8)

(P1P2 . . . Pt){i} ≥ (E1E2 . . . Et){i} = L1L2 . . . Lt > 0, ∀i ∈ S,

we have P1P2 . . . Pt > 0. �

Let P ∈ Nm,n. Define

P = (P ij) ∈ Nm,n, P ij =
{

1 if Pij > 0,
0 if Pij = 0,

∀i ∈ 〈m〉, ∀j ∈ 〈n〉. We call P the incidence matrix of P (see, e.g., [6, p. 222]).
Let π = (πi)i∈S = (π1, π2, . . . , πr) be a probability distribution on S.

One way to sample approximately from S is by means of the well-known
Metropolis-Hastings chain ([10] and [5]). Let Q ∈ Sr be an irreducible matrix
such that Q is a symmetric matrix. Define

P = (Pij) ∈ Sr, Pij =


0 if j 6= i and Qij = 0,

Qij min(1,
πjQji

πiQij
) if j 6= i and Qij > 0,

1−
∑
k 6=i

Pik if j = i.

Since πP = π (πiPij = πjPji, ∀i, j ∈ S, implies πP = π), we have Pn → e′π
as n → ∞. The Markov chain with transition matrix P is called Metropolis-
Hastings (see also [2–3] and [18] for some historical notes, open problems, and
results on this chain).

Further, we define our hybrid Metropolis-Hastings chain.
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Let ∆1,∆2, . . . ,∆t+1 ∈ Par(S) with ∆1 = (S) � ∆2 � · · · � ∆t+1 =
({i})i∈S . (We set ∆ � ∆′ if ∆′ � ∆ and ∆′ 6= ∆, where ∆,∆′ ∈ Par(E), see
Section 1.) Let Q1, Q2, . . . , Qt ∈ Sr such that

(C1) Q1, Q2, . . . , Qt are symmetric matrices;
(C2) (Ql)L

K = 0, ∀l ∈ 〈t〉 − {1}, ∀K, L ∈ ∆l, K 6= L (this assumption
implies that Q2, Q3, . . . , Qt are block diagonal matrices);

(C3) (Ql)U
K is a row-allowable matrix, ∀l ∈ 〈t〉, ∀K ∈ ∆l, ∀U ∈ ∆l+1,

U ⊆ K.
Although Ql, l ∈ 〈t〉, are not irreducible matrices if l ≥ 2, we define the
matrices Pl, l ∈ 〈t〉, as in the Metropolis-Hastings case, namely,

Pl = ((Pl)ij) ∈ Sr, (Pl)ij =


0 if j 6= i and (Ql)ij = 0,

(Ql)ij min(1,
πj(Ql)ji

πi(Ql)ij
) if j 6= i and (Ql)ij > 0,

1−
∑
k 6=i

(Pl)ik if j = i,

∀l ∈ 〈t〉. Set P = P1P2 . . . Pt.

Theorem 2.3. Concerning P above we have πP = π and P > 0.

Proof. Since πi(Pl)ij = πj(Pl)ji, ∀l ∈ 〈t〉, ∀i, j ∈ S, we have πPl = π,
∀l ∈ 〈t〉. Further, πPl = π, ∀l ∈ 〈t〉, implies πP = π. By Theorem 2.2,
P = P1P2 . . . Pt > 0. �

By Theorem 2.3, Pn → e′π as n → ∞. P determines a Markov chain;
we call this chain the hybrid Metropolis-Hastings chain. In particular, we call
this chain the hybrid Metropolis chain when Q1, Q2, . . . , Qt are symmetric
matrices.

We need the next result for the analysis of hybrid Metropolis-Hastings
chain.

Theorem 2.4. (A less or more known result.) Let P ∈ Sr be an ape-
riodic irreducible matrix. Consider a Markov chain with transition matrix P
and limit probability distribution π. Let pn be the probability distribution of
chain at time n, ∀n ≥ 0. Then

‖pn − π‖1 ≤ 2α(Pn).

Proof. (The proof is less or more known.) Let µ and ν be two probability
distributions on 〈m〉 and Q ∈ Sm,n. It is known that

‖µQ− νQ‖1 ≤ ‖µ− ν‖1α(Q)

(see, e.g., [7, p. 147]). Using the above result, pn = p0P
n, and πP = π, we have

‖pn − π‖1 = ‖p0P
n − πPn‖1 ≤ ‖p0 − π‖1α(Pn) ≤ 2α(Pn). �
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Now, bounds for ‖pn − π‖1 of the hybrid Metropolis-Hastings chain can
follow from Theorems 1.8 and 2.4 and Remark 1.9. This analysis can be reali-
zed for each hybrid chain or for certain collections of hybrid chains. Obviously,
it is necessary that t be as small as possible.

Suppose that ∆l =
(
K

(l)
1 ,K

(l)
2 , . . . ,K

(l)
ul

)
, ∀l ∈ 〈t + 1〉. Below we con-

sider a case which can be analyzed more easily than the others, namely, that
satisfying, moreover, the conditions:

(c1) |K(l)
1 | = |K(l)

2 | = · · · = |K(l)
ul |, ∀l ∈ 〈t + 1〉 with ul ≥ 2;

(c2) r = r1r2 . . . rt with r1r2 . . . rl = |∆l+1|, ∀l ∈ 〈t− 1〉, and rt = |K(t)
1 |

(this is compatible with ∆1 � ∆2 � · · · � ∆t+1);
(c3) (c3.1) Ql is a symmetric matrix such that (c3.2) (Ql)ii > 0, ∀i ∈ S,

and (Ql)i1j1 = (Ql)i2j2 , ∀i1, i2, j1, j2 ∈ S with i1 6= j1, i2 6= j2, and (Ql)i1j1 ,
(Ql)i2j2 > 0, ∀l ∈ 〈t〉 ((c3.2) says, to put it otherwise, that all the positive
entries of Ql, excepting the entries (Ql)ii, ∀i ∈ S, are equal, ∀l ∈ 〈t〉);

(c4) (Ql)U
K has in each row just one positive entry, ∀l ∈ 〈t〉, ∀K ∈ ∆l,

∀U ∈ ∆l+1 with U ⊆ K (this is compatible with (c3.1) because (Ql)W
V is a

square matrix, ∀l ∈ 〈t〉, ∀V,W ∈ ∆l+1).
By (C2), (c1), (c2), and (c4),

|{j | j ∈ S and (Ql)ij > 0}| = rl, ∀i ∈ S, ∀l ∈ 〈t〉,
and by (c1) and (c2),

|K(l+1)
1 | = r

|∆l+1|
=

r1r2 . . . rt

r1r2 . . . rl
= rl+1rl+2 · · · rt, ∀l ∈ 〈t− 1〉.

To give an example for which the conditions (C1)–(C3) and (c1)–(c4)
hold, we consider S = 〈6〉 (r = 6 = 3·2), ∆1 =(〈6〉), ∆2 =({1, 2}, {3, 4}, {5, 6}),
∆3 = ({i})i∈〈6〉 = ({1}, {2}, . . . , {6}),

Q1 =



2
4 0 1

4 0 0 1
4

0 2
4 0 1

4
1
4 0

1
4 0 2

4 0 1
4 0

0 1
4 0 2

4 0 1
4

0 1
4

1
4 0 2

4 0
1
4 0 0 1

4 0 2
4


and Q2 =



1
4

3
4 0 0 0 0

3
4

1
4 0 0 0 0

0 0 1
4

3
4 0 0

0 0 3
4

1
4 0 0

0 0 0 0 1
4

3
4

0 0 0 0 3
4

1
4


.

Further, we choose the positive entries of matrices Ql, l ∈ 〈t〉; these
are not choose at random (it is interesting to bear in mind this fact). Let
l ∈ 〈t〉. Set

fl = min
i,j∈S, (Ql)ij>0

πj

πi
, gl =

1
fl

,

and (see (c3) again)
xl = (Ql)ij ,
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where i, j ∈ S are fixed such that i 6= j and (Ql)ij > 0. Obviously, fl ≤ 1,
gl ≥ 1, and

gl = max
i,j∈S,(Ql)ij>0

πj

πi
.

We have
(Pl)ii = 1−

∑
j 6=i

(Pl)ij ≥ 1− (rl − 1)xl.

We impose
1− (rl − 1)xl ≥ xlfl.

It follows that
xl ≤

1
fl + rl − 1

.

We choose the matrix Ql such that

xl =
1

fl + rl − 1
.

To see that this choice is possible, we need to prove that (Ql)ii > 0 (see (c3)
above). Indeed,

(Ql)ii = 1−
∑

j∈S,j 6=i

(Ql)ij = 1− (rl − 1)xl = 1− rl − 1
fl + rl − 1

> 0.

Below we give another main result of this article.

Theorem 2.5. Under the above assumptions we have
(i) α(P ) ≤ 1− r f1

f1+r1−1
f2

f2+r2−1 · · ·
ft

ft+rt−1 =
= 1− r 1

1+(r1−1)g1

1
1+(r2−1)g2

· · · 1
1+(rt−1)gt

;

(ii) ‖pn − π‖1 ≤ 2(1− r f1

f1+r1−1
f2

f2+r2−1 · · ·
ft

ft+rt−1)n =
= 2(1− r 1

1+(r1−1)g1

1
1+(r2−1)g2

· · · 1
1+(rt−1)gt

)n, ∀n ≥ 0,

where pn is the probability distribution at time n of the hybrid Metropolis chain
with the transition matrix P = P1P2 . . . Pt, ∀n ≥ 0;

(iii) an upper bound of the minimum number n of steps such that ‖pn −
π‖1 ≤ ε is [(ln ε

2)/(ln a(P ))] if 0 < ε ≤ 2 (recall that ‖pn − π‖1 ≤ 2, ∀n ≥ 0),
a(P ) > 0, where

a(P ) := 1− r
f1

f1 + r1 − 1
f2

f2 + r2 − 1
· · · ft

ft + rt − 1
.

Proof. (i) The inequality follows from Remark 1.7 and Theorem 1.8
(we have

(Pl)ij ≥ xlfl =
fl

fl + rl − 1
, ∀i, j ∈ S with (Pl)ij > 0, ∀l ∈ 〈t〉).

The equation is obvious.
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(ii) It follows from Theorem 2.4, (i), and the well-known inequality

α(T1T2) ≤ α(T1)α(T2), ∀T1 ∈ Sm1,m2 , ∀T2 ∈ Sm2,m3

([4]; see, e.g., also [6, p. 58] or [7, p. 145]).
(iii) We impose 2(a(P ))n ≤ ε. Then ‖pn − π‖1 ≤ ε if

n ≥ [(ln ε
2)/(ln a(P ))]. �

Remark 2.6. (a) Theorem 2.5(ii) gives a geometric convergence rate of
the hybrid Metropolis chain. Obviously, the chain has a fast convergence if fl

is close to 1, ∀l ∈ 〈t〉.
(b) By Theorem 2.5(ii), if π = (πi)i∈S is the uniform distribution on

S = 〈r〉 (in this case, fl = 1, ∀l ∈ 〈t〉), then ‖p1 − π‖1 = 0 (i.e., we have an
exact sampling from uniform distribution in one step due to P or, equivalently,
in t steps due to P1, P2, . . . , Pt).

(c) The bound from Theorem 2.5(ii) could not be the best one; this is
an open problem.

To speed up the hybrid Metropolis-Hastings chain, we can replace the
product Ps+1Ps+2 · · ·Pt (1 ≤ s < t) from P = P1P2 . . . PsPs+1 · · ·Pt by the
∆s+1-stable matrix (recall that ∆l = (K(l)

1 ,K
(l)
2 , . . . ,K

(l)
ul ), ∀l ∈ 〈t + 1〉)

P ∗ = P ∗(s) :=


A
∗(s+1)
1

A
∗(s+1)
2

. . .
A
∗(s+1)
us+1

 ,

where

A∗(s+1)
z :=

1∑
i∈K

(s+1)
z

πi
e′(|K(s+1)

z |)(πi)i∈K
(s+1)
z

, ∀z ∈ 〈us+1〉

(recall that e = e(n) = (1, 1, . . . , 1) ∈ Rn and e′ is its transpose). E.g., if S =
〈8〉, ∆1 =(〈8〉), ∆2 =({1, 2, 3, 4}, {5, 6, 7, 8}), ∆3 =({1, 2}, {3, 4}, {5, 6}, {7, 8}),
∆4 = ({i})i∈〈8〉 = ({1}, {2}, . . . , {8}), then, for s = 2, P = P1P2P

∗ with

P ∗ = P ∗(2) =



1

a
(3)
1

W
∗(3)
1 0 0 0

0 1

a
(3)
2

W
∗(3)
2 0 0

0 0 1

a
(3)
3

W
∗(3)
3 0

0 0 0 1

a
(3)
4

W
∗(3)
4


,
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where a
(3)
1 := π1 + π2, a

(3)
2 := π3 + π4, a

(3)
3 := π5 + π6, a

(3)
4 := π7 + π8,

W
∗(3)
1 := e′(2)(π1, π2), W

∗(3)
2 := e′(2)(π3, π4), W

∗(3)
3 := e′(2)(π5, π6), and

W
∗(3)
4 := e′(2)(π7, π8) (obviously, A

∗(3)
k = 1

a
(3)
k

W
∗(3)
k , ∀k ∈ 〈4〉), while, for

s = 1, P = P1P
∗ with

P ∗ = P ∗(1) =

 1

a
(2)
1

W
∗(2)
1 0

0 1

a
(2)
2

W
∗(2)
2

 ,

where a
(2)
1 := π1 +π2 +π3 +π4, a

(2)
2 := π5 +π6 +π7 +π8, W

∗(2)
1 := e′(4)(π1, π2,

π3, π4), and W
∗(2)
2 := e′(4)(π5, π6, π7, π8). Moreover, setting

C1 =

 1

a
(2)
1

U
∗(2)
1 0

0 1

a
(2)
2

U
∗(2)
2

 ,

where U
∗(2)
1 := e′(4)(π1 + π2, 0, π3 + π4, 0), and U

∗(2)
2 := e′(4)(π5 + π6, 0, π7 +

π8, 0), we have P ∗(1) = C1P
∗(2). (This result can be generalized easily.) Con-

sequently, we can work with C1 and P ∗(2) instead of P ∗(1). This is an inter-
esting thing because the matrices C1 and P ∗(2) are sparser than P ∗(1).

To unify the theory of the hybrid chain with right ∆-stable matrices as
above and that without right ∆-stable matrices as above, below we consider
that s ∈ 〈t〉 and set rt+1 = 1,

P = P (s) =
{

P1P2 . . . Pt if s = t,

P1P2 . . . PsP
∗ if 1 ≤ s < t,

and

a(P ) =

{
1− r f1

f1+r1−1
f2

f2+r2−1 · · ·
ft

ft+rt−1 if P = P1P2 . . . Pt,

1− r f1

f1+r1−1
f2

f2+r2−1 · · ·
fs

fs+rs−1
1

rs+1rs+2···rt+1
if P = P1P2 . . . PsP

∗.

The two results below are generalizations of Theorems 2.3 and 2.5, re-
spectively.

Theorem 2.7. Concerning P above we have πP = π and P > 0.

Proof. See the proof of Theorem 2.3. �

Theorem 2.8. Concerning P above we have (recall that |K(l+1)
1 | =

rl+1rl+2 · · · rt+1, ∀l ∈ 〈t〉)
(i) α(P ) ≤ 1− r f1

f1+r1−1
f2

f2+r2−1 · · ·
fs

fs+rs−1
1

rs+1rs+2···rt+1
=

= 1− r 1
1+(r1−1)g1

1
1+(r2−1)g2

· · · 1
1+(rs−1)gs

1
rs+1rs+2···rt+1

;

(ii) ‖pn − π‖1 ≤ 2(1− r f1

f1+r1−1
f2

f2+r2−1 · · ·
fs

fs+rs−1
1

rs+1rs+2···rt+1
)n =
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= 2(1− r 1
1+(r1−1)g1

1
1+(r2−1)g2

· · · 1
1+(rs−1)gs

1
rs+1rs+2···rt+1

)n, ∀n ≥ 0,

where pn is the probability distribution at time n of the hybrid Metropolis chain
with transition matrix P , ∀n ≥ 0;

(iii) an upper bound of the minimum number n of steps such that ‖pn −
π‖1 ≤ ε is [(ln ε

2)/(ln a(P ))] if 0 < ε ≤ 2, a(P ) > 0.

Proof. See the proof of Theorem 2.5. (We use the partitions ∆1 = (S),∆2,

. . . , ∆s+1, ({i})i∈S if 1≤s<t; it is easy to compute (P ∗)−+(∆s+1,({i})i∈S).) �

Remark 2.9. If 1 ≤ s1 < s2 ≤ t, then

1− r
1

1 + (r1 − 1)g1

1
1 + (r2 − 1)g2

· · · 1
1 + (rs1 − 1)gs1

1
rs1+1rs1+2 · · · rt+1

≤

≤ 1− r
1

1 + (r1 − 1)g1

1
1 + (r2 − 1)g2

· · · 1
1 + (rs2 − 1)gs2

1
rs2+1rs2+2 · · · rt+1

.

Consequently, the convergence rate obtained for s1 is better than that for s2.

3. SPECIAL CASES

Below we consider two special cases of our hybrid Metropolis-Hastings
chain; one refer to S = Sn, where Sn is the set of permutations of order n, and
the other to S = {0, 1, . . . , h}n, h, n ≥ 1. (In Sections 1 and 2 we used S = 〈r〉
for simplification; S can be any finite set.) These special cases can easily be
implemented on a computer.

First, we consider S = Sn. In this case, r := |S| = n!. Let Al
n be the set

of arrangements using l of n objects, ∀l ∈ 〈n〉. Set (see [17])

K(i1,i2,...,il) = {σ | σ ∈ Sn and σ(s) = is, ∀s ∈ 〈l〉}, ∀l ∈ 〈n− 1〉,
∆1 = (Sn),

and
∆l+1 = (K(i1,i2,...,il))(i1,i2,...,il)∈Al

n
, ∀l ∈ 〈n− 1〉.

Obviously, we have ∆n = ({σ})σ∈Sn and r1 = n, r2 = n − 1, . . ., rn−1 =
2. (We can also study other decompositions of n!, such as r1 = n(n − 1),
r2 = (n − 2)(n − 3), . . . , rk = 3 · 2 if n = 2k + 1 ≥ 5 and r1 = n(n − 1),
r2 = (n− 2)(n− 3), . . . , rk−1 = 4 · 3 · 2 if n = 2k ≥ 6.)

Define the matrices Ql = ((Ql)στ ), l ∈ 〈n − 1〉, by (see above of Theo-
rem 2.5; see also [17])

(Ql)στ =


1

fl+n−l if τ = σ ◦ (l,m) for some m ∈{l + 1, l + 2, . . . , n},
0 if τ 6= σ ◦ (l,m), ∀m ∈ {l + 1, l + 2, . . . , n},
1−

∑
γ 6=σ

(Ql)σγ if τ = σ,
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∀l ∈ 〈n − 1〉, ∀σ, τ ∈ Sn ((l, m) is a transposition). Further, we have (see
Section 2; t = n − 1, s ∈ 〈n − 1〉, and the matrices Ql, l ∈ 〈n − 1〉, are
symmetric)

Pl = ((Pl)στ ), (Pl)στ =

 (Ql)στ min(1, πτ
πσ

) if τ 6= σ,

1−
∑
γ 6=σ

(Pl)σγ if τ = σ,

∀l ∈ 〈n− 1〉, ∀σ, τ ∈ Sn, and

P =

{
P1P2 . . . Pn−1 if s = n− 1,

P1P2 . . . PsP
∗ if 1 ≤ s < n− 1.

Then, by Theorem 2.8(ii), we have

‖pu − π‖1 ≤ 2
(

1− n!
(n− s)!

f1

f1 + n− 1
f2

f2 + n− 2
· · · fs

fs + n− s

)u

=

= 2
(

1− n!
(n− s)!

1
1 + (n− 1)g1

1
1 + (n− 2)g2

· · · 1
1 + (n− s)gs

)u

, ∀u ≥ 0.

If f1, f2, . . . , fn−1 ≥ f for some f ∈ (0, 1], then g1, g2, . . . , gn−1 ≤ g := 1
f (f

and g depend or not on n ). In this case, we have

‖pu − π‖1 ≤ 2
(

1− n!
(n− s)!

f

f + n− s

f

f + n− s + 1
· · · f

f + n− 1

)u

=

= 2
(

1− n!
(n− s)!

1
1 + (n− s)g

1
1 + (n− s + 1)g

· · · 1
1 + (n− 1)g

)u

, ∀u ≥ 0,

and, moreover, we can replace fl by f in the definition of Ql above, ∀l ∈ 〈n−1〉
(see above of Theorem 2.5 again).

If π = (πσ)σ∈Sn is the uniform distribution on Sn, we can take f = 1 and,
with this choice, we have ‖p1 − π‖1 = 0 (one step due to P or, equivalently,
n− 1 steps due to P1, P2, . . . , Pn−1 (the latter is a well-known result, see, e.g.,
[8, pp. 139–141], [17], and [19])).

Remark 3.1. It is easy to obtain two bounds for

1− n!
(n− s)!

1
1 + (n− s)g

1
1 + (n− s + 1)g

· · · 1
1 + (n− 1)g

;

more exactly, from

n!
(n− s)!

1
1 + (n− s)g

1
1 + (n− s + 1)g

· · · 1
1 + (n− 1)g

≤

≤ n!
(n− s)!

1
(n− s)g

1
(n− s + 1)g

· · · 1
(n− 1)g

=
n

n− s

1
gs
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and (since g ≥ 1)

n!
(n− s)!

1
1 + (n− s)g

1
1 + (n− s + 1)g

· · · 1
1 + (n− 1)g

≥

≥ n!
(n− s)!

1
(n− s + 1)g

1
(n− s + 2)g

· · · 1
ng

=
1
gs

we have

1− n

n− s

1
gs

≤

≤ 1− n!
(n− s)!

1
1 + (n− s)g

1
1 + (n− s + 1)g

· · · 1
1 + (n− 1)g

≤ 1− 1
gs

Theorem 3.2. If g and s are fixed (g, s ≥ 1), then

lim
n→∞

(
1− n!

(n− s)!
1

1 + (n− s)g
1

1 + (n− s + 1)g
· · · 1

1 + (n− 1)g

)
= 1− 1

gs
.

Proof. See Remark 3.1. �

To give some numerical results (with their error estimates), we consider

πσ =
θd(σ,σ0)

Z
, ∀σ ∈ Sn,

where 0 < θ ≤ 1, σ0 ∈ Sn, d(σ, σ0) = minimum number of transpositions
required to bring σ to σ0, and Z =

∑
σ∈Sn

θd(σ,σ0) (see, e.g., [1, p. 104], or [2], or

[3]). d is called the Cayley metric and this construction is called the Mallows
model through Cayley metric (see, e.g., [1, Chapter 6] for other examples of
metrics on Sn and, therefore, other examples of Mallows models). In this case,
we take f = θ and, therefore, g = 1

θ because f1 = f2 = · · · = fn−1 = θ and,
therefore, g1 = g2 = · · · = gn−1 = 1

θ (note that f and g do not depend on n);
f1 = f2 = · · · = fn−1 = θ because

|d(σ, σ0)− d(τ, σ0)| ≤ 1,

∀σ ∈ Sn, ∀τ ∈ Sn with τ = σ ◦ (l, m) for some transposition (l, m), l 6= m
(we use the fact that d is metric and d(σ, τ) = 1, ∀σ ∈ Sn, ∀τ ∈ Sn with τ as
above) and

|d(σ, σ0)− d(τ, σ0)| = 1

when τ is as above and, e.g., σ = σ0. We also note that min
σ,τ∈Sn

πσ
πτ

= θ
n(n−1)

2

and max
σ,τ∈Sn

πσ
πτ

= (1
θ )

n(n−1)
2 .
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Now, if, e.g., θ = 1
2 , we have g = 2. For n = 30 (30! ' 2.6525 · 1032; in

this case, the greatest value of πσ is 1
Z and the smallest is 1

2435Z
) and s = 12

(s = 12 could not be the best choice), we have, e.g.,

‖pu − π‖1 ≤ 0.086255 · · · if u = 10000

(10000 steps due to P or, equivalently, 13 · 10000 = 130000 steps due to
P1, P2, . . . , P12, P

∗) and

‖pu − π‖1 ≤ 0.00371996 · · · if u = 20000.

For n = 40 (40! ' 8.1592 · 1047) and s = 22, we have, e.g.,

‖pu − π‖1 ≤ 0.0580266 · · · if u = 107

(107 steps due to P or, equivalently, 23 · 107 steps due to P1, P2, . . . , P22, P
∗)

and

‖pu − π‖1 ≤ 0.00988384 · · · if u = 15 · 106.

We have not used the result from Theorem 2.8(iii). Obviously, this can
easily be made for any given error 0 < ε ≤ 2. We also note that estimating
the errors is a very large gap in Markov chain Monte Carlo theory.

Second, we consider S = {0, 1, . . . , h}n, h, n ≥ 1. This case is interesting
to analyze because, e.g., the Ising model (with an external field or not) is
defined on S = {0, 1}n while the Potts model and grey-scale images (see, e.g.,
[9, Chapter 6]) are even defined on S = {0, 1, . . . , h}n. Using the notation
from Section 2, we have r := |S| = (1 + h)n. If n = n1 + n2 + · · · + nw,
then r = (1 + h)n1(1 + h)n2 · · · (1 + h)nw and, consequently, we can take ri =
(1 + h)ni , ∀i ∈ 〈w〉. Below we only consider the case n1 = n2 = · · · = nw := v,
ri = (1 + h)v, ∀i ∈ 〈w〉. In this case, n = vw.

Set

K(x1,x2,...,xvl) = {(y1, y2, . . . , yn) | (y1, y2, . . . , yn) ∈ S and yi = xi,∀i ∈ 〈vl〉},

∀l ∈ 〈w〉, ∀x1, x2, . . . , xvl ∈ {0, 1, . . . , h} (obviously,

K(x1,x2,...,xvw) = K(x1,x2,...,xn) = {(x1, x2, . . . , xn)}),

∆1 = (S),

and

∆l+1 = (K(x1,x2,...,xvl))x1,x2,...,xvl∈{0,1,...,h}, ∀l ∈ 〈w〉.
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Define the symmetric matrices Ql, l ∈ 〈w〉, by (x = (x1, x2, . . . , xn), etc.)

(Ql)xy =



1
fl+(1+h)v−1 if (y1, y2, . . . , yv(l−1)) = (x1, x2, . . . , xv(l−1)) when

1 ≤ v(l − 1), (yvl+1, yvl+2, . . . , yn) = (xvl+1,
xvl+2, . . . , xn) when vl + 1 ≤ n, and x 6= y,

0 if (y1, y2, . . . , yv(l−1)) 6= (x1, x2, . . . , xv(l−1)) when
1 ≤ v(l − 1) or (yvl+1, yvl+2, . . . , yn) 6= (xvl+1,
xvl+2, . . . , xn) when vl + 1 ≤ n,

1−
∑
z 6=x

(Ql)xz if x = y,

∀l ∈ 〈w〉, ∀x, y ∈ S. Further, we have (see Section 2)

Pl = ((Pl)xy), (Pl)xy =

 (Ql)xy min(1,
πy

πx
) if y 6= x,

1−
∑
z 6=x

(Pl)xz if y = x,

∀l ∈ 〈w〉, ∀x, y ∈ S, and

P =

{
P1P2 . . . Pw if s = w,

P1P2 . . . PsP
∗ if 1 ≤ s < w.

Then, by Theorem 2.8(ii), we have (s ∈ 〈w〉)

‖pu − π‖1 ≤ 2
(

1− (1 + h)sv f1

f1 + (1 + h)v − 1
· · · fs

fs + (1 + h)v − 1

)u

=

= 2
(

1− (1 + h)sv 1
1 + ((1 + h)v − 1)g1

· · · 1
1 + ((1 + h)v − 1)gs

)u

, ∀u ≥ 0.

If f1, f2, . . . , fw ≥ f for some f ∈ (0, 1] and, consequently, g1, g2, . . . , gw ≤
g := 1

f , then

‖pu − π‖1 ≤ 2
(

1− (1 + h)sv

(
f

f + (1 + h)v − 1

)s)u

=

= 2
(

1− (1 + h)sv 1
(1 + ((1 + h)v − 1)g)s

)u

, ∀u ≥ 0,

and, moreover, we can replace fl by f in the definition of Ql above, ∀l ∈ 〈w〉
(see above of Theorem 2.5 again).

Recall (see Remark 2.6(b)) that if π = (πi)i∈S is the uniform distribution
on S = {0, 1, . . . , h}n (in this case, f1 = f2 = · · · = fw = 1), then ‖p1−π‖1 = 0.

To give some numerical results, we consider the Ising model (see, e.g.,
[9, Chapter 6]) on the m1 ×m2 grid. This grid is a graph G = (V,E), where

V := {1, 2, . . . ,m1} × {1, 2, . . . ,m2}
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is the vertex set and

E := {(a, b) | a = (a1, a2), b = (b1, b2) ∈ V and a1 = b1, a2 − b2 = −1

or a1 − b1 = −1, a2 = b2}
is the edge set. To define the Ising model on this grid, we must consider
S = {0, 1}|V |; in this case, r = 2|V | and n = |V | = m1m2. Let q : 〈|V |〉 → V
be a bijective function. Let

H(x) =
∑

i,j∈〈|V |〉
(q(i),q(j))∈E

1[xq(i) 6= xq(j)], ∀x = (xq(1), xq(2), . . . , xq(n)) ∈ S,

where

1[xq(i) 6= xq(j)] =

{
1 if xq(i) 6= x

q(j)
,

0 if x
q(i)

= x
q(j)

,

∀i, j ∈ 〈|V |〉, i 6= j. Define

πx = πx(β) =
exp(−βH(x))

Zβ
, ∀x ∈ S,

where β ∈ R∗ := R−{0} is a parameter, and

Zβ =
∑
x∈S

exp(−βH(x)).

The probability distribution π = (πx)x∈S is called the Ising model (without
external field). Taking q(1) = (1, 1), q(2) = (1, 2), . . . , q(m2) = (1,m2), q(m2+
1) = (2, 1), q(m2 + 2) = (2, 2), . . . , q(2m2) = (2,m2), . . . , q((m1 − 1)m2 + 1) =
(m1, 1), q((m1−1)m2+2) = (m1, 2), . . . , q(m1m2) = (m1,m2), we have (recall
that n = vw = m1m2, where v can be equal or not to m1 or m2)

|H(x)−H(y)| ≤ 3v + 1

if (xq(1), xq(2), . . . , xq(v(l−1))) = (yq(1), yq(2), . . . , yq(v(l−1))) when 1 ≤ v(l−1) and
(xq(vl+1), xq(vl+2), . . . , xq(n)) = (yq(vl+1), yq(vl+2), . . . , yq(n)) when vl + 1 ≤ n.
It follows that we can take f = exp(−β(3v + 1)) and, consequently, g =
exp(β(3v + 1)) if β > 0 and f = exp(β(3v + 1)) and, consequently, g =
exp(−β(3v + 1)) if β < 0. Obviously, we obtain better results if we use fl,
l ∈ 〈w〉, instead of f (or gl, l ∈ 〈w〉, instead of g).

If we take, e.g., m1 = m2 = 10, v = 1, s = w ( s = w is the worst case),
and β = 1

64 , then n = 100, w = 100, r = 2100 ' 1.26765 · 1030, and, e.g.,

‖pu − π‖1 ≤ 0.235 . . . if u = 50

(50 steps due to P or, equivalently, 50·100 = 5000 steps due to P1, P2, . . . , P100)
(we used g = exp( 1

16); e= 2.718 . . . is the base of exponential function exp),

‖pu − π‖1 ≤ 0.027 . . . if u = 100,
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and
‖pu − π‖1 ≤ 0.00032 . . . if u = 150

(2100 is near to 30! from the example of Mallows model, but here we have
good bounds for ‖pu − π‖1 in a small number u of steps; obviously, this is
easy to understand because our (general) upper bound for ‖pu − π‖1 from
Theorem 2.8(ii) depends on u and the values of the parameters of the model
and of Markov chain) while if we take, e.g., m1 = 20, m2 = 10, v = 1, s = w,
and β = 1

64 , then n = 200, w = 200, r = 2200 ' 1.60693 · 1060, and, e.g.,

‖pu − π‖1 ≤ 0.346 . . . if u = 1000,

‖pu − π‖1 ≤ 0.144 . . . if u = 1500,

and
‖pu − π‖1 ≤ 0.060 . . . if u = 2000

(we note also that 2200 is much larger than 40! from the example of Mallows
model, but here we also have good bounds for ‖pu − π‖1 in a small number u
of steps).

We conclude saying that we believe that the homogeneous Markov chain
framework is too narrow to design fast algorithms of Metropolis-Hastings type.
Moreover, we believe that our hybrid Metropolis-Hastings chain works better
than the Metropolis-Hastings chain, at least on Sn, the set of permutations of
order n, and on {0, 1, . . . , h}n.
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