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1. INTRODUCTION

If (M,a) is a Riemannian manifold, then it is easy to see that its geodesics
are reversible, i.e., if γ : [0, 1] → M is a geodesic of a, then γ : [0, 1] → M ,
γ(t) := γ(1− t) is also a geodesic of a.

In the more general case of an arbitrary Finsler manifold (M,F ), this
property is not always true. However, there are special Finsler structures on
smooth manifolds whose geodesics are reversible. Among these, except the
Riemannian ones, we mention: the absolute homogeneous Finsler structures,
Randers metrics obtained from a Riemannian structure and a closed 1-form
β, etc. (see [5], [7], [11]).

Our main interest is to characterize Finsler structures which have re-
versible geodesics and emphasize the difference with the absolute homogeneous
and Riemannian cases, which we regard hereafter as trivial Finsler structures.
We have studied in the past this problem in the Finsler manifolds (M,F ) with
(α, β)-metrics, obtaining necessary and sufficient conditions for F to be with
reversible geodesics. Namely, in any dimension, F is with reversible geodesics
if and only if F is a Randers change of an absolute homogeneous Finsler struc-
ture on M , by a closed 1-form, or a Minkowsky structure obtained from a flat
Riemannian metric and a 1-form β with constant coefficients ([11], [12]).

In the following, we will consider the most general family of Finsler struc-
tures with reversible geodesics known, namely the Randers change F = F0+β,
where F0 is an absolute homogeneous Finsler structure on M , and β = bi(x)yi

is a linear form on TM , whose associated differentiable 1-form β̂ := bi(x)dxi
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is closed. In the present paper, we consider β̂ to be a 1-form on M and regard
β : TM → R as a map, throughly.

A ubiquitous example is the polynomial (α, β)-metric φ(s) =
p∑

k=0

a2k ·

s2k +ε ·s, ∀p ∈ N∗, where a2k and ε 6= 0 are constants (see Section 2 for details
on the φ-notation).

Special cases of this polynomial (α, β)-metrics family are the Randers
metric φ(s) = 1 + ε · s, and the quadric metric φ(s) = 1 + ε · s + s2 ([1], [6]
and maybe others).

In the present paper we will study some geometrical properties of (α, β)-
metrics with reversible geodesics, as well as some global constructions on
warped products and symplectic manifolds of these structures. From our present
study, one can see that there is plenty of naturally induced nontrivial Finsler
structures with reversible geodesics and that their geometry worth more de-
tailed investigation.

2. DEFINITIONS AND BASIC FACTS
ON FINSLER MANIFOLDS

Let (M,F ) be an n-dimensional connected Finsler manifold (see [2] for
definition). Hereafter TM = ∪

x∈M
TxM denotes the tangent bundle of M with

local coordinates u = (x, y) = (xi, yi) ∈ TM , where i = 1, . . . , n, y =
yi

(
∂

∂xi

)
x
.

If γ : [0, 1] → M is a piecewise C∞ curve on M , then its Finslerian
length is defined as

LF (γ) :=
∫ 1

0
F (γ(t), γ̇(t))dt.(2.1)

and the Finslerian distance function dF : M × M → [0,∞) is defined by
dF (p, q) = inf

γ
LF (γ), where the infimum is taken over all piceweise C∞ curves

γ on M joining the points p, q ∈ M . In general, this is not symmetric.
A curve γ : [0, 1] → M is called a geodesic of (M,F ) if it minimizes the

Finslerian length for all piecewise C∞ curves that keep their end points fixed.
If we denote by F the reverse Finsler metric of F , that is F : TM →

(0,∞), F (x, y) := F (x,−y), then F is also a Finsler metric. Moreover, we have:

Lemma 2.1. If γ(t) is a geodesic of the Finsler space (M,F ), then γ(t) :=
γ(1− t) is a geodesic of F , but not necessarily a geodesic of F in general.

Recall the following definition ([7], [11] and other sources).
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Definition 2.2. The Finsler metric F is called with reversible geodesics
if and only if for any geodesic γ(t) of F , the reverse curve γ̄(t) := γ(1 − t) is
also a geodesic of F .

We point out that in general dF (p, q) = dF (q, p), ∀p, q ∈ M , but even
though a Finsler metric is with reversible geodesics it does not mean that it
has symmetric distance function, except for the absolute homogeneous case.
Indeed, we have

Proposition 2.3. Let (M,F ) be a connected, complete Finsler manifold
with associated distance function dF : M ×M → [0,∞).

Then dF is symmetric distance function on M × M if and only if F is
absolute homogeneous, i.e., F (x, y) = F̄ (x, y) = F (x,−y).

Proof. If F is absolute homogeneous, then for any curve c : [0, 1] → M ,
c(0) = p, c(1) = q, we have

dF (p, q) = inf
c

∫ 1

0
F (c(t), c′(t))dt =(2.2)

= inf
c̄

[
−

∫ 1

0
F̄ (c̄(s), c̄′(s))(−ds)

]
= dF (q, p),

i.e., the induced distance is symmetric.
Conversely, we assume dF (p, q) = dF (q, p) for any p, q ∈ M .
Recall that if γv(t) is a Finslerian geodesic from p with initial velocity

v, then the fundamental Finsler function can be recovered by the following
Busemann-Meyer formula F (p, v) = lim

t↘0

dF (p,γv(t))
t (see [2] for details).

Using these notations, the symmetry of the distance function and the
Lemma 2.1 we have

F (p, v) = lim
t↘0

dF (p, γv(t))
t

= lim
t↘0

dF (γv(t), p)
t

= lim
t↘0

dF̄ (p, γ̄v(t))
t

= F (p,−v)

and the Proposition is proved. �

Locally, a smooth curve γ : [0, 1] → M is a constant Finslerian speed
geodesic of (M,F ) if and only if it satisfies γ̈i(t) + 2Gi(γ(t), γ̇(t)) = 0, i =
1, . . . , n, where the functions Gi : T̃M → R are given by

Gi(x, y) = Γi
jk(x, y)yjyk,(2.3)

with Γi
jk(x, y) := 1

2gis

(
∂gsj

∂xk + ∂gsk

∂xj − ∂gjk

∂xs

)
.

The vector field Γ := yi ∂
∂xi −2Gi ∂

∂yi , is a well defined vector field on TM ,
whose integral lines are the canonical lifts γ̃(t) = (γ(t), γ̇(t)) of the geodesics
of γ. Because of this, the vector field Γ is called the canonical geodesic
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spray of the Finsler space (M,F ) and Gi are called the coefficients of the
geodesic spray Γ.

Recall ([7], [11]) that the Euler-Lagrange equation of (M,F ) can be writ-
ten in terms of the geodesic spray as Γ

(
∂F
∂yi

)
− ∂F

∂xi = 0.

If F and F̃ are two different fundamental Finsler functions on the same
manifold M , then they are called projectively equivalent if their geodesics
coincide as set points. Using geodesics sprays, this is equivalent to Γ̃

(
∂F
∂yi

)
−

∂F
∂xi = 0, where Γ̃ is the geodesic spray of (M, F̃ ) (see [7], [11]).

A Finsler structure (M,F ) is with reversible geodesics if and only if
F and its reverse function F are projectively equivalent, i.e., the geodesics of
F and F coincides as set of points. If we denote by Γ the reverse geodesic
spray, then F is with reversible geodesics if and only if Γ

(
∂F
∂yi

)
− ∂F

∂xi = 0.
The following result is known ([7], [11]).

Theorem 2.4. If (M,F0) is an absolute homogeneous Finsler structure
and β = bi(x) · yi is a linear form in TM , then the Randers change F :=
F0 + ε · β is a Finsler structure on M with reversible geodesics if and only if
β̂ := bi(x)dxi is a closed 1-form on M , where ε 6= 0 is a constant.

The proof is immediate. �

Remark 2.5. By a completely similar computations as in the above proof,
one can easily verify that actually the Finslerian metrics F and F0 are projec-
tively equivalent if and only if β̂ is closed (this was proved for the first time in
[10]). This gives a new perspective on the geometrical reason that F = F0+εβ
is with reversible geodesics.

Concrete Finsler structures having reversible geodesics can be easily ob-
tained in the class of (α, β)-metrics, namely Finsler metrics F = F (α, β),
where F is a positive 1-homogeneous function of two arguments α and β.
Here, α =

√
aij(x)yiyj is a Riemannian metric on M , and β = bi(x)yi the

linear form on TM . We will consider in the following only positive definite
(α, β)-metrics, i.e., we impose always the condition b2 := aij(x)bibj < 1.

Following Shen ([18]), we remark that it can be very useful to write
F = αφ

(
β
α

)
, where φ : I = [−r, r] → [0,∞) is a C∞ function and the interval

I can be chosen large enough such that r ≥ |βα |, for all x ∈ M and y ∈ TxM .
One has the following

Lemma 2.6 (Shen’s Lemma, [18]). The function F = αφ(s), s = β
α is a

Finsler metric for any α =
√

aijyiyj and any β = biy
i with ‖βx‖α < b0 if and

only if φ = φ(s) is a positive C∞ function on (−b0, b0) satisfying

(2.4) φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0.
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We remark that a first condition following from here is

(2.5) φ(s)− sφ′(s) > 0, |s| < b0.

Moreover, Lemma 2.6 implies that if F = α · φ
(

β
α

)
is an (α, β) Finsler

metric, then φ cannot be an odd function (see [12], Lemma 2.3).
For later use we give

Lemma 2.7 ([13]). Let
(
M,F (α, β)

)
be a Finsler space with (α, β)-metric.

Then

(2.6) f(x, y) · ∂α

∂yi
+ g(x, y) · bi = 0, ∀i = 1, . . . , n

implies f = g = 0, for any smooth functions f , g on TM .

From Theorem 2.4, we get

Corollary 2.8. Any of the following (α, β)-metrics:

(a) F (α, β) = a0 · α +
p∑

k=1

a2k · β2k

α2k−1 + ε · β, a0, a2k, ε constants (6= 0),

p ∈ N∗;
(b) F (α, β) = α + β, i.e., Randers metric;
(c) F (α, β) = (α+β)2

α , i.e., quadratic metric
all are with reversible geodesics if and only if β̂ is a closed 1-form on M .

Let us point out here that the Randers change given in Theorem 2.4 is
actually almost the best we can expect for a Finsler metric with reversible
geodesics, at least in the (α, β)-metrics case. Indeed, we can reformulate at
least here our main results from [11], [12] as follows

Theorem 2.9. Let (M,F ) be a non-Riemannian n (≥ 2)-dimensional
Finsler structure with (α, β)-metric, which is not absolute homogeneous.

Then F is with reversible geodesics if and only if

(2.7) F (α, β) = F0(α, β) + εβ,

where F0 is absolute homogeneous (α, β)-metric, ε is a non zero constant and
β̂ is a closed 1-form on M .

A special case is when we consider a flat Riemannian metric α on M = Rn

and a 1-form β with constant coefficients. Then any (α, β)-metric F con-
structed with these α and β has reversible geodesics. One can easily see that
this F is locally Minkowski and that its geodesics are in fact straight lines.

Finally, we discuss the case when the Randers change F (α, β) = F0(α, β)+
εβ is projectively equivalent to the underlying Riemannian structure (M,α).

We will give here a more general result
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Theorem 2.10. 1. Assume
(
M,F (α, β)

)
is an (α, β)-Finsler structure,

β̂ closed, Γα(β) 6= 0, where Γα is the geodesic spray of α. Then F is pro-
jectively equivalent to the Riemannian structure (M,α) if and only if F is a
Randers metric.

2. If F = α + β is a Randers metric, then F is projectively equivalent to
(M,α) if and only if β̂ is closed.

Proof. We start with a computation

Γα

(
∂F

∂yi

)
− ∂F

∂xi
= Γα

(
Fα ·

∂α

∂yi
+ Fβ ·

∂β

∂yi

)
− Fα ·

∂α

∂xi
− Fβ ·

∂β

∂xi
=(2.8)

= Γα(Fα) · ∂α

∂yi
+ Γα(Fβ) · bi + 2Fβ · curlij · yj ,

where Fα = ∂F (α,β)
∂α , Fβ = ∂F (α,β)

∂β . Here we have used the Euler-Lagrange

equations for α, i.e., Γα

(
∂α
∂yi

)
− ∂α

∂xi = 0 and Γα(bi) = ∂bi

∂xk · yk from definition.

If β̂ closed, i.e., curlij = 0 and F projectively equivalent to the Riemannian
structure α, then Γα(Fα) · ∂α

∂yi +Γα(Fβ) · bi = 0 and from Lemma 2.7 we obtain

(2.9) Γα(Fα) = 0, Γα(Fβ) = 0.

On the other hand, by using Γα(α) = 0, we have Γα(Fα) = Fαα ·Γα(α)+
Fαβ ·Γα(β) = Fαβ ·Γα(β), where we have used that Γα(α) = 0. Here we denote
Fαα = ∂Fα(α,β)

∂α and so on.
Similarly, Γα(Fβ)=Fββ ·Γα(β) and therefore when β̂ is closed and F pro-

jectively equivalent to α, relation (2.9) implies Fαβ ·Γα(β) = 0, Fββ ·Γα(β) = 0.
If Γα(β) 6= 0, it follows Fαβ = 0, Fββ = 0 and therefore Fβ = constant.

From the homogeneity of F with respect to α, β, it follows Fα = constant,
i.e., F must be of Randers type.

Conversely, if F = α + β is Randers metric, then it is known that it is
projectively equivalent to α if and only if β̂ is closed. �

Remark 2.11. Compare with [10] for the proof of the statement 2 in
Theorem 2.10.

3. PROPERTIES OF (α, β)-METRICS
WITH REVERSIBLE GEODESICS

A Finsler structure (M,F ) is called (locally) projectively flat if all
of its geodesics are straightlines. An equivalent condition is that the spray
coefficients Gi of F can be expressed as Gi = P (x, y) · yi, where P (x, y) =
1

2F · ∂F
∂xk · yk.
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An equivalent characterization of projectively flatness is the Hamel’s
relation ∂2F

∂xm∂yk · ym − ∂F
∂xk = 0 ([9]). We obtain

Theorem 3.1. Let F = F0 + εβ be a Randers change, where F0 is an
absolute homogeneous (α, β)-metric. Then any two of the following properties
imply the third one:

(i) F is projectively flat;
(ii) F0 is projectively flat;
(iii) β̂ is closed.

Proof. We compute ∂2F
∂xm∂yk ·ym = ∂2F0

∂xm∂yk ·ym +ε · ∂bk
∂xm ·ym and therefore

Hamel’s relation reads ∂2F
∂xm∂yk · ym− ∂F

∂xk = ∂2F0

∂xm∂yk · ym− ∂F0

∂xk +2ε · curlkm · ym

and the conclusion follows. �

By taking F0 = α it follows immediately

Corollary 3.2. A Randers metric F = α + β with reversible geodesics
is projectively flat if and only if α is projectively flat.

Taking now into account Beltrami’s theorem, i.e., a Riemannian structure
is projectively flat if and only if it is a space form, we obtain

Corollary 3.3. If the Randers structure (M,F = α + β) is with re-
versible geodesics and projectively flat, then, if we identify M with its universal
covering, the base manifold M must be isometric to one of the model manifolds
Sn, En, Hn.

In general, we have

Theorem 3.4. If F is projectively flat, then it is with reversible geodesics.

Proof. First, let us remark that F is projectively flat if and only if F is
projectively flat. Indeed, this can be immediately verified by Hamel’s relation.
F projectively flat means ∂2F

∂xm∂yk · ym − ∂F
∂xk = 0, at every (x, y) ∈ T̃M . We

can write this relation at (x,−y) i.e., ∂2F
∂xm∂yk

∣∣∣
(x,−y)

· (−ym) − ∂F
∂xk

∣∣∣
(x,−y)

= 0.

On the other hand, Hamel’s relation for F gives ∂2F (x,−y)
∂xm∂yk · ym − ∂F (x,−y)

∂xk =

− ∂2F
∂xm∂yk

∣∣∣
(x,−y)

· ym − ∂F
∂xk

∣∣∣
(x,−y)

and the statement follows.

This means that F and F are both projectively equivalent to the standard
Euclidean metric and therefore F must be projective to F , i.e., F must be
with reversible geodesics. Obviously, if the geodesics of F and F coincide as
trajectories, there is no reason for these to be straight lines. �

Remark 3.5. 1. The converse of Theorem 3.4 is not true. This can be
easily seen taking into account the metrics constructed in [19], [20].
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2. More generally ([14], [20]) gives a characterization of all (α, β)-metrics
that are projectively flat in dimension greater than 2. Obviously, all of these
are examples of (α, β)-metrics with reversible geodesics.

3. Based on these, a similar study can be done for projective flat (α, β)-
metrics of constant flag curvature. It can be shown that there exist (α, β)-
metrics with reversible geodesics, which are of constant flag curvature, but
not necessarily projectively flat. Obviously, in the Randers case, constant flag
curvature implies α projectively flat, but for more general (α, β)-metrics, this
is not true any more (compare [5]).

Theorem 3.6. Let F =
p∑

k=0

a2k · β2k

α2k−1 +ε·β be a polynomial (α, β)-metric

on an n ≥ 3 dimensional smooth manifold M . Suppose that β̂ is closed, but not
parallel everywhere, F is not Randers and neither db 6= 0 nor b = constant.
Then F is projectively flat if and only if the followings hold

1. φ(s) = a0 +
p∑

k=1

(−1)k−1 (2k−3)!!
(2k)!

k−1∏
j=0

(
1− j

p

)
a0c

ks2k + εs,

2. bi|j = 2τ
[
aij +

(
b2aij − 2p+1

2p bibj

)
c
]
,

3. Gi
α = ξyi − cτα2bi,

where bi|j is the covariant derivation of bi with respect to α. Here τ(x), ξ are
scalar functions on M , and a0, c are arbitrary real constants.

All these metrics are with reversible geodesics.

Proof. The proof is based on Theorem 1.1 in [19]. Indeed, by computing

φ′(s), φ′′(s) for φ(s) =
p∑

k=0

a2ks
2k + εs, and substituting in relation {1 + (c1 +

c2s
2)s2 + c3s

2}φ′′(s) = (c1 + c2s
2){φ(s) − sφ′(s)} from Theorem 1.1 in [19],

where c1, c2, c3 are real constants, we get an equality of two polynomials
or degree 2p + 2 in s with constant coefficients. By comparing first the 0-
order terms we obtain relation a2 = 1

2c1a0. Next, we compare the highest
order terms, and imposing a2p 6= 0 it follows c2 = 0. This leads to a lot of
simplifications in computations. Moreover, comparing the coefficients of the 2p
order terms it follows c3 = −2p+1

2p c1. By continuing this comparison procedure,
we obtain the formulas

a2k = − (2k − 3)
2k(2k − 1)

{c1 + (2k − 2)(c1 + c3)}a2k−2,

for all k = 1, 2, . . . , p.
Remark that this can be regarded as a linear system of p equations that

allows to compute the coefficients a2k, k = 1, 2, . . . , p, depending on a0 and c1

only (if we take into account formulas above).
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Finally, by induction, we get

a2k = (−1)k−1 (2k − 3)!!
(2k)!

k−1∏
j=0

(
1− j

p

)
a0c

k,

for all k = 1, 2, . . . , p, where we put c := c1 for simplicity, (−1)!! := −1, 1!! := 1
and the conclusion follows immediately from [19]. �

Example 3.7. We can easily obtain now examples of such Finsler metrics
with (α, β)-metrics that are projectively flat and with reversible geodesics
using 1 in Theorem 3.6. Indeed, φ(s) = a0 + 1

2a0cs
2 +εs, φ(s) = a0 + 1

2a0cs
2−

1
48a0c

2s4 +εs, φ(s) = a0 + 1
2a0cs

2− 1
36a0c

2s4 + 1
1080a0c

3s6 +εs are polynomials
that together with conditions 2 and 3 in Theorem 3.6 give examples of (α, β)
metrics which are projectively flat and with reversible geodesics (dim M ≥ 3).

4. WARPED PRODUCTS

Warped products are n-dimensional Riemannian structures on manifolds
M = I × N , where I ⊂ R is an open interval, and (N,h) is an (n − 1)-
dimensional Riemannian manifold.

Typical Riemannian metrics on warped products are written as a2 =
dt2 + ϕ2(t) · h2, where ϕ : I → (0,∞) is a smooth function on I.

One can easily remark that on these manifolds there exists always a
closed 1-form β̂ given by β̂ = f(t) · dt, for any function f defined on I.

Therefore, we have

Theorem 4.1. Let (M = I×N , a2 = dt2+ϕ2(t)·h2) be a warped product
Riemannian metric and let β̂ := f(t)·dt, where f : I → R is a smooth function.

Then for any absolute homogeneous Finsler metric F0 on M , and a linear
1-form β := f(t)y0 on TM , the function F = F0 + ε · β is a Finsler metric
on M with reversible geodesics, where we denote (y0, y1, . . . , yn−1) ∈ TxM ,
n − 1 = dim N , the induced coordinates of a tangent plane in a point to M ,
and by ε any non vanishing constant.

For the warped Riemannian manifold (M = I×N, a), and a linear 1-form
β as defined as in Theorem 4.1, we obtain

Corollary 4.2. The (α, β)-metrics given by φ(s) =
p∑

k=0

a2k · s2k + ε · s,

p ∈ N∗ are with reversible geodesics, where a2k, k = 0, 1, . . . , p, and ε are some
non vanishing constants.

Remark 4.3. From the discussions in the precedent section, one can see
that there are Finsler structures with (α, β)-metrics global defined on warp
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products, with reversible geodesics, which are not projectively flat (com-
pare [20]).

Important warped products are the manifolds I×Sn−1 with Riemannian
metric α2 = dt2 + ϕ2(t) · ds2

n−1, where (Sn−1, ds2
n−1) is the standard round

sphere with its canonical Riemannian metric. These are called rotationally
symmetric metrics.

Remarkably, the standard sphere Sn can be written as a rotationally
symmetric metric in all dimensions. Indeed, by writing Sn = (0, π) × Sn−1,
with metric given above, where ϕ(t) is the unique solution of the differential
equation with initial solution ϕ′′(t) + ϕ(t) = 0, ϕ(0) = 0, ϕ′(0) = 1, then the
map G : (0, π) × Sn−1 → R × Rn, (t, z) 7→ G(t, z) = (cos t, sin t · z) maps the
unit sphere in Rn+1. Indeed, it can be seen by direct computation that G is a
Riemannian isometry ([15]).

We obtain immediately.

Proposition 4.4. Let (Sn, a) be the standard unit sphere described above,
and put β̂ = f(t) ·dt, for any f : Sn → R. Then the (α, β)-metric family given

by φ(s) =
p∑

k=0

a2k · s2k + ε · s, a2k (k = 0, 1, . . . , p), ε 6= 0 constants is a Finsler

metric with reversible geodesics, globally defined on Sn.

An interesting metric can be obtained from Theorem 5.1 in [6] as follows.

Theorem 4.5. Let (M,a) be a warped product with metric a2 = dt2 +(
ϕ′(t)

)2 · h2 and consider β̂ = 1
10 · ϕ

− 3
5 · ϕ′dt, where ϕ = ϕ(t) is a solution of

ϕ′′(t) = 20 ·ϕ
1
5 + 2

5 ·ϕ
−1 · (ϕ′)2. Then F = (α+β)2

α is a non-Berwald Finslerian
metric on M with the properties: it has reversible geodesics, it is projectively
flat, and of constant flag curvature K = 0.

More generally, taking into account that the Hessian of a smooth func-
tion ϕ defined on a Riemannian manifold (M,a) equals the half of the Lie
derivative of a with respect to the gradient of ϕ, namely Hessaϕ := 1

2L∇ϕa
(see [16]), we get.

Theorem 4.6. If there are smooth functions ϕ and λ on a Riemannian
manifold (M,α) such that Hessαϕ = λα2, dϕ 6= 0, then M is a warped product
that can be endowed with a Finsler metric whose geodesics are reversible.

Proof. From [16], or Lemma 3.1 in [6], it follows that under the assump-
tions in the hypothesis, (M,α) is a warped product structure. Indeed, in this
case M = R ×N , the function ϕ depends only on the parameter t ∈ R, N is
a level set of ϕ and α2 = dt2 + (ϕ′(t))2h2, where h is the Riemannian metric
on N . From our Theorem 4.1 it follows that we can always construct on such
manifold M a Finsler structure with reversible geodesics. �
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5. SYMPLECTIC MANIFOLDS

We will show, in the following, that on symplectic manifolds (see [4],
[8] for definitions) one can construct (α, β) Finsler structures with reversible
geodesics.

It is clear that the space sp(Ω) of symplectic vector fields can be identified
with Z1(M), the space of closed 1-forms on M , by the isomorphism of C∞(M)-
modules [ : χ(M) → Λ1(M), X 7→ XyΩ with the inverse # : Λ1(M) → χ(M).
Therefore, we obtain

Theorem 5.1. Let F = F0 + ε · β be a Finsler metric on a symplectic
manifold (M,Ω), where F0 is an absolute homogeneous Finsler metric on M

and β̂ = −Xy Ω, for any symplectic vector field X on M . Then F is with
reversible geodesics.

One can see easily that if Ω ∈ Λ2(M2n) is a symplectic structure on a
compact manifold M , then the de Rham cohomology class [Ω] ∈ H2

dR(M, R)
must be non-vanishing. This immediately eliminates the existence of symplec-
tic structures on even-dimensional spheres, except for S2 (see for example [4]).

Theorem 5.2. Any orientable smooth surface S can be endowed with a
Finsler metric with reversible geodesics.

Proof. Indeed, it can be seen that if S is an orientable smooth surface,
then it has a volume form, or area form, say µ on S. By definition, µ is a non-
degenerate closed 2-form on S and therefore it defines a symplectic structure
on S.

Using this, we can obtain Finsler metrics with reversible geodesics as
above by taking β̂ := −Xy µ, for any symplectic vector field and any Rie-
mannian metric α on S. �

For any f ∈ C∞(M), the vector field Xf := #(df) is called the Hamil-
tonian vector field associated to f . The set of Hamiltonian vector fields is
denoted with h(Ω) and we have h(Ω) = #(B1(M)), where B1(M) is the sub-
space of exact 1-forms on M . It can be shown that h(Ω) is an ideal in the Lie
algebra sp(Ω), i.e., [sp(Ω), h(Ω)] ⊂ h(Ω).

Obviously, the Hamiltonian vector fields generate closed one forms in
the same way as symplectic vector fields and therefore, they always allow the
construction of Finsler structures with reversible geodesics.

As an application, let us see how this construction works on S2. If S2 ↪→
R3 is the 2-dimensional unit sphere, then one can identify the tangent space
TpS2 at p ∈ S2 with the set of vectors in R3 orthogonal to p with respect to
the standard inner product 〈· , ·〉. Then, Ωp(v, w) = 〈p, v×w〉 defines a closed
non-degenerate differential 2-form, such that (S2,Ω) becomes a symplectic
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manifold. Let us consider S2 endowed with cylindrical coordinates (h, θ) ∈
[−1, 1]× (0, 2π], i.e., h is the “height” of the point p and θ is the “angle”. In
these coordinates, the area form of S2 reads Ω = dθ ∧ dh. If we consider the
Hamiltonian function H = h, the height function on S2, then the north and
south poles are critical points.

With the notations above, we define the vector field Xh such that dh =
Xhy dθ ∧ dh. It follows Xh = ∂

∂θ . This Hamiltonian vector field generates
a periodic R-action, i.e., an S1-action on S2 by rotation that preserves the
level sets, i.e., the parallel curves, of the Hamiltonian function h. Indeed,
Xhydh = Ω(Xh, Xh) = 0 (see for example [8]).

Then, denoting by α a Riemannian metric on S2 and β̂ := dh, we get

Theorem 5.3. The Finsler metric φ(s) =
n∑

k=0

a2k · s2k + ε · s on S2,

constructed with α and β above is with reversible geodesics.

Remark 5.4. There is no need to consider the standard Riemannian met-
ric on S2 for α. Any other metric can be used as well.

It can be seen that if one consider α to be the standard Riemannian
metric on S2, then Xh is a Killing vector field on S2 and therefore the induced
Randers metric F = α + β must be of constant flag curvature K = 1. In this
case, F is with reversible geodesics and projectively flat in the same time (see
[5] for a more general case).

Another interesting case is when we consider a Zoll metric α on S2 (see
[3] for details on Zoll metrics) and using it we construct Finsler metrics with
reversible geodesics by taking β̂ as before. Therefore we obtain

Theorem 5.5. If (S2, a) is a round sphere with a Zoll metric and β̂ is a
closed form on S2 defined as before, then the induced Randers metric F = α+β
on S2 has the following properties: it is with reversible geodesics and all its
geodesics are closed and periodic.

The proof is trivial taking into account that in this case F is actually
projectively equivalent to the Zoll metric a. This Randers structure has the
remarkable property that its set of geodesics is a differentiable manifold in fact
diffeomorphic to S2.

Further relations between symplectic geometry and the geometry of a
Finsler space with reversible geodesics can be subject of a future research.
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