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1. INTRODUCTION

One of the most important notions in the theory of metric structures over
a manifold is a linear connection in the tangent bundle of the base manifold
which is metric in the sense that the associated parallel translations preserve
the metric. Riemannian and locally Minkowski spaces admit such connections.
However, a Finsler structure determines a metric linear connection only in
the vertical subbundle of the second tangent bundle of the base manifold in
general. The Finsler spaces which still admit metric linear connections in the
tangent bundle of the base manifold enjoy a special interest, and are called
generalized Berwald spaces. If such a metric connection is torsion-free, then
the space is a Berwald space. Berwald spaces are well understood [8, 9], while
we hardly have any deep results concerning generalized Berwald spaces. In this
paper we continue and complete our investigations presented on the FERT-
2011 conference [13], putting them into a somewhat different setting.

A Finsler space is a manifold M together with a Finsler function F on
the tangent manifold TM . The F-unit vectors in TM constitute the indicatrix
bundle I of TM . Conversely, an indicatrix bundle I ⊂ TM , i.e., a smooth
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family of strongly convex ‘unit spheres’ around the origin in every tangent
space, determines a Finsler function F . So we may equivalently consider a
Finsler space Fn as a pair (M, I), where M is a manifold and I ⊂ TM is
an indicatrix bundle. This interpretation fits our considerations much better.
An affine deformation is an alteration of a given Finsler structure by regular
linear (called affine) distortion of the indicatrices.

The structure of the paper is the following. In Section 2 we derive the
metric linear connection induced by an affine deformation in Rn. For simpli-
city, we work over Rn as base manifold throughout the paper. Our method and
the results so obtained may be extended to more general classes of manifolds
(e.g., to parallelizable manifolds), however such an extension still requires
certain topological restrictions. In Section 3 we show that generalized Berwald
spaces (denoted by Bn in this paper) are exactly the affine deformations of
Minkowski spaces. It turns out in Section 4 that generalized Berwald spaces
coincide with the Finsler spaces of 1-form metric, and they can uniquely be
represented as a pair of a Riemannian and a Minkowski space. In this section
we give a geometric condition for the reduction of a Finsler space to a Bn

space, and for the reduction of a Bn space to a Minkowski, a Riemannian or a
Euclidean space. Also, we mention a possible extension of these investigations
to the more general class of Lagrange spaces. In Section 5 conformal relations
are studied. We show that if a Finsler space is non-homothetically conformal
to a Minkowski space, then it is a proper (i.e., non-Berwaldian) generalized
Berwald space.

2. AFFINE DEFORMATIONS IN Rn

As we have remarked above, our considerations will be of purely local
character, so we assume that our base manifold is the Euclidean n-space Rn

(n ≥ 2), although the results obtained in this setting may be extended to some
more general classes of manifolds. We also assume that Rn is equipped with
the canonical scalar product 〈 , 〉, which allows us to talk of the Euclidean
unit sphere Sn−1, ellipsoids, etc. The tangent space TpRn of Rn at p is just
{p} × Rn, so the tangent bundle of Rn is TRn = Rn × Rn. If (ei)n

i=1 is the
canonical basis of Rn, then the mappings

Ei : Rn → TRn p 7→ Ei(p) := (p, ei), i ∈ {1, . . . , n}

are (smooth) vector fields on Rn. We say that the family (Ei)n
i=1 is the natural

frame field on Rn.
For any p ∈ Rn, the tangent space TpRn may be identified with Rn by the

canonical isomorphism ip : TpRn → Rn, (p, v) 7→ v. Whenever it is convenient,
we use this identification without any comment. Given two points p, q ∈ Rn,
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the composite mapping

ip,q := i−1
q ◦ ip : TpRn → TqRn

yields a canonical isomorphism between TpRn and TqRn, called the natural
parallel translation between TpRn and TqRn. We have

(1) ia,q ◦ ip,a = ip,q, ip,p = 1TpRn , a, p, q ∈ Rn,

so the family of the isomorphisms ip,q (p, q ∈ Rn) is a parallelism on Rn, which
we also call natural. (For the general concept of parallelism on a manifold we
refer to [3], vol. I, p. 174 and vol. II, p. 361.)

Definition. By an affine deformation in Rn we mean a family

ap : TpRn → TpRn, p ∈ Rn

of regular linear transformations, depending smoothly on p, i.e., a type (1, 1)
tensor field

(2) a : p ∈ Rn 7→ ap ∈ T1
1(TpRn) ∼= End(TpRn)

such that ap ∈ GL(TpRn) for all p ∈ Rn.

Now, with the help of an affine deformation (2), we introduce a further
parallelism on Rn, which is no longer natural. Let for any two points p, q in Rn

(3) Pp,q := aq ◦ ip,q ◦ a−1
p : TpRn → TqRn.

Then Pp,q is a linear isomorphism and we have

(4) Pa,q ◦ Pp,a = Pp,q, Pp,p = 1TpRn , a, p, q ∈ Rn,

so the family P = (Pp,q)(p,q)∈Rn×Rn is a parallelism on Rn, called the parallelism
induced by the affine deformation a. A vector field X on M is said to be parallel
with respect to P, if Pp,q(Xp) = Xq for all p, q ∈ Rn. Define the vector fields
Xi ∈ X(Rn) by

(5) (Xi)p := Po,p(Ei(o)), p ∈ Rn, i ∈ {1, . . . , n},

where o ∈ Rn is the origin. Then the Xi’s are parallel with respect to P, since
for each p, q ∈ Rn,

Pp,q((Xi)p)
(3), (5)

= aq ◦ ip,q ◦ a−1
p ◦ ap ◦ io,p ◦ a−1

o (Ei(o))
(1)
= aq ◦ io,q ◦ a−1

o (Ei(o))

= Po,q(Ei(o)) =: (Xi)q.

Let the components of the tensor field a with respect to the natural frame
(Ei)n

i=1 be the functions ai
j : Rn → R. Then

(6) a(Ej) = ai
jEi, j ∈ {1, . . . , n},
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where the matrix (ai
j) is invertible. Let (bi

j) := (ai
j)
−1. An immediate calcu-

lation shows that

(7) Xi = ak
j b

j
i (o)Ek, i ∈ {1, . . . , n},

i.e., the components of Xi with respect to the natural frame (Ei)n
i=1 form the

invertible matrix

(8) (P k
i ) = (ak

j b
j
i (o)).

The inverse of (P k
i ) is

(9) (P̃ k
i ) := (P k

i )−1 = (ak
j (o)b

j
i ).

There exists a unique linear connection ∇a in TRn such that

(10) ∇a
Xi

Xj = 0, i, j ∈ {1, . . . , n}.
∇a is called the connection induced by a. Since the components of the curva-
ture tensor Ra of ∇a with respect to the frame (Xi)n

i=1 are given by

Ra(Xi, Xj)Xk = ∇a
Xi
∇a

Xj
Xk −∇a

Xj
∇a

Xi
Xk −∇a

[Xi,Xj ]
Xk,

it follows that Ra = 0, i.e., ∇a is a flat connection. We determine the Christof-
fel symbols of ∇a with respect to the natural frame (Ei)n

i=1, i.e., the functions
Γk

ij defined by

∇a
Ei

Ej = Γk
ijEk, i, j ∈ {1, . . . , n}.

Since

∇a
Ei

Ej = ∇a
P̃ k

i Xk
P̃ l

jXl = P̃ k
i (XkP̃

l
j)Xl + P̃ k

i P̃ l
j∇a

Xk
Xl

(10)
= P̃ k

i (XkP̃
l
j)Xl,

applying (7) and (9) we find that

(11) Γk
ij = ak

l (Dib
l
j) = −bl

j(Dia
k
l ),

where Di stands for the standard ith partial derivative operator (which may
be identified with Ei).

Remark 1. Following an idea of N. Hicks [4], the linear connection ∇a

may also be constructed more directly as follows.
Let ∇ be the canonical flat connection in TRn, and let ∇̃a be defined by

∇̃a
XY := a∇Xa−1Y, X, Y ∈ X(Rn).

It is easy to check that ∇̃a satisfies the conditions of a covariant derivative
operator. Since

∇̃a
Ei

Ej := a∇Eia
−1Ej = a∇Eib

l
jEl = (Eib

l
j)a(El) = ak

l (Dib
l
j)Ek

(11)
= Γk

ijEk,

it follows that ∇̃a = ∇a.
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3. AFFINE DEFORMATIONS OF FINSLER SPACES

Let U be a nonempty domain of Rn. By a Finsler function on U we
mean a continuous function

F : TU = U × Rn → [0,∞[

such that
(F1) F is smooth on U × (Rn \ {0});
(F2) Fp := F � TpRn is a norm on the vector space TpRn ∼= Rn for

all p ∈ U ;
(F3) F2(p, · ) has positive definite Hessian on Rn \ {0} for every p ∈ U .
In what follows, unless otherwise stated, by an n-dimensional Finsler

space we mean a pair Fn := (Rn,F), where F is a Finsler function on the whole
Rn, although the case of (nonempty) convex subsets instead of Rn requires only
obvious modifications. This remark goes also for most of the special Finsler
spaces which will be introduced below.

The indicatrix of a Finsler space Fn at a point p ∈ Rn is

Ip := {v ∈ Rn | Fp(v) := F(p, v) = 1} ⊂ TpRn;

their union IRn :=
⋃

p∈Rn Ip ⊂ TRn is called the indicatrix bundle of Fn.
IRn and the Finsler function F determine each other mutually, so in place of
Fn = (Rn,F) we also write Fn = (Rn, IRn). The indicatrices Ip prove to be
more appropriate for our geometric considerations than the Finsler function F .

Observe that if a is an affine deformation in Rn and

ĪRn := aIRn :=
⋃

p∈Rn

apIp,

then aFn := (Rn, ĪRn) is also a Finsler space, called an affine deformation
of Fn.

Example. (a) Consider the Euclidean n-space as the very special Finsler
space En = (Rn, E), where

E(p, v) := 〈v, v〉
1
2 =: ‖v‖ for all (p, v) ∈ TRn.

If Sn−1 := {v ∈ Rn | ‖v‖ = 1} is the unit sphere in Rn, then the indicatrix of
En at a point p is

Sp = i−1
p (Sn−1) = {(p, v) ∈ TpRn | ‖v‖ = 1},

and the indicatrix bundle of En is S =
⋃

p∈Rn Sp. So we may write En =
(Rn, S).

If a is an affine deformation in Rn, then

(12) Qp := apSp = ap ◦ i−1
p (Sn−1) ⊂ TpRn
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is an ellipsoid, and

(13) aEn := (Rn, Q) :=
(

Rn,
⋃

p∈Rn

Qp

)
=: V n

is a Riemannian space. Conversely, any Riemannian space V n whose under-
lying manifold is Rn can be obtained in this way. From this it follows that
given two Riemannian spaces V n

1 = (Rn, Q1) and V n
2 = (Rn, Q2), each of them

can be obtained by an affine deformation from the other. This is not true,
however, for two generic Finsler spaces!

(b) A Finsler space (Rn,F) = (Rn, IRn) is said to be a Minkowski space,
denoted by Mn, if the Finsler function ‘does not depend on the position’,
i.e., if

(14) Fq = Fp ◦ iq,p for all p, q ∈ Rn.

Then F may simply be considered as a continuous norm on Rn, satisfying the
smoothness and strong convexity requirements according to (F1) and (F3). In
terms of the indicatrices, condition (14) takes the form

(15) Iq = ip,q(Ip), p, q ∈ Rn.

Thus for a Minkowski space one can unambiguously use the notation Mn =
(Rn, I0), where I0 := ip(Ip) ⊂ Rn, with an arbitrarily chosen point p ∈ Rn.
Applying an affine deformation a, we obtain fromMn the Finsler space aMn =
(Rn, ĪRn) = (Rn,

⋃
p∈Rn Īp), where

(16) Īp := ap(Ip) = ap ◦ i−1
p (I0), p ∈ Rn.

Then aMn is not a Minkowski space any longer. An important exception is
the case when the deforming tensor a does not depend on the position, i.e.,
there is a regular linear transformation ϕ ∈ GL(Rn) such that

ap = i−1
p ◦ ϕ ◦ ip for any point p ∈ Rn.

For more information, see Theorem 2 below.
(c) A Finsler space (Rn,F) is said to be a generalized Berwald space if

there is a linear connection ∇ in TRn which is metric in the sense that the
parallel translations

P∇p,q(γ) : TpRn → TqRn, p, q ∈ Rn

along any curve segment γ connecting p with q, with respect to ∇ preserve
the F-norms of the tangent vectors, or, equivalently, if

Iq = P∇p,q(γ)(Ip) for all p, q ∈ Rn.

If, in addition, ∇ is torsion-free, then (Rn,F) is called a Berwald space. A
generalized Berwald space will be called proper, if it is not a Berwald space.
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For an analytic treatment of generalized Berwald spaces in an abstract set-
ting we refer to [10] and [11]. Berwald spaces are treated in most books on
Finsler spaces, and in a number of papers. For a recent survey on the different
approaches to Berwald manifolds see [12].

Simplifying the notation, in what follows we write P∇p,q for a parallel
translation with respect to ∇, if it does not depend on the curve segment
connecting p with q.

Now, we are in a position to formulate and prove the following important
result (see also [14], and cf. [5]):

Theorem 1. An affine deformation of a Minkowski space is a generalized
Berwald space, and any generalized Berwald space can be obtained in this way.

Proof. Let Mn = (Rn, I0) be a Minkowski space, and a an affine defor-
mation in Rn. Consider the affine deformation aMn = (Rn,

⋃
p∈Rn Īp) of Mn,

whose indicatrices Īp are given by (16). Let ∇a be the linear connection in-
duced by a. Then the parallel translation with respect to ∇a does not depend
on the curves connecting the points (since Ra = 0), and are just the mappings
given by (3). So for any two points p, q in Rn we have

Pp,q(Īp)
(3), (16)

= aq ◦ ip,q ◦ a−1
p ◦ ap ◦ i−1

p (I0)

= aq ◦ ip,q ◦ i−1
p (I0) = aq ◦ i−1

q (I0)
(16)
= Īq.

Thus, the parallel translations preserve the indicatrices of aMn, therefore
aMn is a generalized Berwald space.

Conversely, let a generalized Berwald space Bn = (Rn, ĨRn) be given,
and let ∇ be a metric linear connection which preserves the indicatrices of Bn.
Choose a point p0 ∈ Rn, and define a Minkowski spaceMn =(Rn,

⋃
p∈Rn Ip) by

(17) Ip0 := Ĩp0 , Ip := ip0,p(Ĩp0).

Let an affine deformation a in Rn be given by

p ∈ Rn 7→ ap := P∇p0,p(γ) ◦ ip,p0 ∈ GL(TpRn),

where P∇p0,p(γ) : Tp0Rn → TpRn is the parallel translation with respect to ∇
along the parametrized line segment γ : [0, 1] → Rn, t 7→ γ(t) := (1− t)p0 + tp.
Displaying by a diagram

TpRn
ip,p0−→ Tp0Rn

ap ↘ ↙ P∇p0,p(γ)

TpRn
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We claim that aMn = Bn. Indeed, for every point p ∈ Rn, we find that

ap(Ip) = P∇p0,p(γ) ◦ ip,p0 ◦ ip0,p(Ĩp0) = P∇p0,p(γ)(Ĩp0) = Ĩp,

since P∇p0,p(γ) carries indicatrix to indicatrix. �

4. SOME PROPERTIES OF GENERALIZED
BERWALD SPACES

In 1978 M. Matsumoto and H. Shimada [6] introduced and investigated
an important class of special Finsler spaces, called Finsler spaces with 1-form
metric. It turns out in our approach that this class is constituted by the affine
deformations of the Minkowski spaces. So, in terms of the Finsler functions,
we may formulate the following

Definition. Let Mn = (Rn,G) be a Minkowski space, and a an affine
deformation on Rn. If for each point p ∈ Rn,

(18) Fp(v) := Gp(ap(v)), v ∈ Rn,

then
F : TRn → R, (p, v) 7→ F(p, v) := Fp(v)

is a Finsler function, called a 1-form Finsler function. Then, we also say that
(Rn,F) is a Finsler space with 1-form Finsler function (or with 1-form metric).

To justify the terminology, let (Ei)n
i=1 be the dual frame of the natural

frame field (Ei)n
i=1. If for each i ∈ {1, . . . , n} and p ∈ Rn

(19) αi(p) := Ei(p) ◦ ap,

then the αi’s are 1-forms on Rn, and F may be written in the form

(20) F = G ◦ (α1, . . . , αn)

(cf. [11], Section 5).
If (Rn,F) is a Finsler space with 1-form Finsler function given by (18),

then (Rn,F) is the affine deformation of Mn = (Rn,G) by a−1, i.e., (Rn,F) =
a−1Mn. Indeed, let Ip and Ĩp be the indicatrices of Mn and (Rn,F) at the
point p. Then

v ∈ Ĩp ⇔ Fp(v) = 1 ⇔ Gp(ap(v)) = 1 ⇔ ap(v) ∈ Ip ⇔ v ∈ a−1
p (Ip),

hence Ĩp = a−1
p (Ip).

Since an affine deformation of a Minkowski space is clearly a Finsler
space of 1-form metric, Theorem 1 leads immediately to

Corollary 1. A Finsler space (Rn,F) is a generalized Berwald space
if, and only if, F is a 1-form Finsler function. �



9 Generalized Berwald spaces as affine deformations of Minkowski spaces 173

Theorem 2. Let Bn = aMn be a generalized Berwald space, and let the
(1, 1) tensor a ∈ T1

1(Rn) be represented as the sequence (α1, . . . , αn) of 1-forms
given by (19). Then Bn is the same Minkowski space Mn if, and only if, the
1-forms αi are closed.

Proof. If Mn = (Rn,G) and Bn = aMn = (Rn,F), then

(21) Fp(v) = Gp ◦ a−1
p (v) for all (p, v) ∈ TRn.

Suppose first that Bn is a Minkowski space. Then a does not depend on the
position, i.e., as we have already remarked, there exists a linear isomorphism
ϕ ∈ GL(Rn) such that

(22) ap = i−1
p ◦ ϕ ◦ ip for all p ∈ Rn.

If ϕ(ej) = ai
jei, then (ai

j) ∈ GLn(R), and

αi
p(ej)p

(19)
= Ei(p)(i−1

p ◦ ϕ(ej)) = Ei(p)(p, ak
j ek) = ak

j E
i(p)(Ek(p)) = ai

j ,

therefore αi = ai
jE

j , and hence dαi = (dai
j)E

j = 0, i ∈ {1, . . . , n}, since ai
j do

not depend on p. Thus the αi’s are closed forms.
Let, conversely, the 1-forms αi be closed. Then they are exact as well,

so there exist smooth functions ϕi : Rn → R such that αi = dϕi. Since
ap ∈ GL(TpRn) (p ∈ Rn), it follows that the mapping

ϕ := (ϕ1, . . . , ϕn) : Rn → Rn, p 7→ (ϕ1(p), . . . , ϕn(p))

has invertible derivative at each point p ∈ Rn, and ap may be identified with
the mapping

(23) iϕ(p),p ◦ (ϕ∗)p : (p, v) ∈ TpRn 7→ (p, ϕ′(p)(v)) ∈ TpRn.

By the inverse mapping theorem, every point p ∈ Rn has an open neigh-
bourhood U such that ϕ is a diffeomorphism of U onto some neighbourhood
of ϕ(p). Given such an open subset U , consider the push-forward vector fields

Xi := ϕ#Ei = ϕ∗ ◦ Ei ◦ ϕ−1, i ∈ {1, . . . , n}

over U . Then (cf. (5)), (Xi) is a frame field on U , and at each point q ∈ U
we have

F(Xi(q)) = F(ϕ∗((Ei)ϕ−1(q)))
(21)
= G ◦ a−1

q (ϕ∗((Ei)ϕ−1(q)))
(23)
= G ◦ (ϕ∗)−1

q ◦ iq,ϕ(q)((ϕ∗)(ϕ
−1(q), ei))

(22)
= G ◦ (ϕ∗)−1

q (ϕ(q), ϕ′(q)(ei)) = G(q, ei) = G((Ei)q),

therefore
F ◦Xi = G ◦ Ei, i ∈ {1, . . . , n}.
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This means that F acts along the ‘new’ local coordinate vector fields Xi in
the same way as G acts along the natural coordinate vector fields (restricted
to U), hence (U ,F � U) is also a Minkowski space. Since this is true in a
suitable neighbourhood of every point of Rn, it follows that (Rn,F) itself is
also a Minkowski space. �

Now let us consider a Riemannian space V n = (Rn, Q) where the indi-
catrix bundle Q is defined by (12) and (13). Given an ellipsoid Qp and the
sphere Sp = i−1

p (Sn−1) in TpRn, the linear isomorphism ap ∈ GL(TpRn) which
carries Sp into Qp, is unique up to a rotation of Sp, i.e., up to an element of
the special orthogonal group SO(TpRn). This rotation may be specified by
the requirement that the canonical basis (p, (ei)n

i=1) of TpRn is mapped by ap

into the basis (p, (vi)n
i=1) formed by the principal axes of Qp. Conversely, given

an affine deformation a ∈ Rn, the image Qp = ap(Sp) is unique at each point
p ∈ Rn. Thus, we have a bijective correspondence

a ∈ T1
1(Rn) � V n = (Rn, Q),

from which the next result may be immediately concluded.

Theorem 3. Any generalized Berwald space Bn = aMn is determined
by a pair (V n,Mn), where V n = (Rn, Q) is a Riemannian space. Conversely,
each pair (V n,Mn) determines a unique generalized Berwald space. �

By Theorem 3, any generalized Berwald space Bn may be written in the
form (V n,Mn), which we call a Riemann–Minkowski representation of Bn.

Corollary 2. If (V n
0 ,Mn) is a Riemann–Minkowski representation of

a generalized Berwald space Bn, then Bn has a metric linear connection which
is determined alone by the Riemannian space V n

0 .

Proof. The statement is an immediate consequence of the fact that the
metric linear connection ∇a constructed for Bn in the proof of Theorem 1
depends only on the affine deformation a, and a is determined by V n

0 in our
case. �

Theorem 4. A Riemann–Minkowski representation (V n,Mn) of a ge-
neralized Berwald space is the Riemannian space V n if, and only if, Mn = En.

Proof. With the notation introduced in the Examples in Section 3,

V n = aEn =
(

Rn,
⋃

p∈Rn

Qp

)
, Qp = ap ◦ i−1

p (Sn−1),

Mn =
(

Rn,
⋃

p∈Rn

Ip

)
, Bn = aMn =

(
Rn,

⋃
p∈Rn

ap(Ip)
)

,
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so Bn = V n if, and only if, for each p ∈ Rn we have

ap ◦ i−1
p (Sn−1) = ap(Ip) ⇔ Ip = i−1

p (Sn−1),

i.e., if Mn = En. �

Theorem 5. A Riemann–Minkowski representation (V n,Mn) of a ge-
neralized Berwald space Bn = aMn is the Euclidean space En if, and only if,
Mn = En and a = (dϕ1, . . . , dϕn), where ϕi ∈ C∞(Rn), i ∈ {1, . . . , n}.

Proof. By the previous theorem, Bn reduces to V n if, and only if, Mn =
En. By the arguments applied in the proof of Theorem 2 it follows that an
affine deformation a = (α1, . . . , αn) of En leads to En itself if, and only if, the
1-forms αi are closed. �

Finally, we give a simple characterization of generalized Berwald spaces
among the Finsler spaces.

Theorem 6. A Finsler space (Rn, IRn) is a generalized Berwald space
if, and only if, all of its indicatrices Ip are of the form a ◦ ip0,p(Ip0), where p0

is a fixed point and a ∈ GL(TpRn)

Proof. The necessity of the condition is obvious. To prove the sufficiency,
consider the sets Gp := {A ∈ GL(TpRn) | A ◦ ip0,p(Ip0) = Ip} for all p ∈ Rn.
Since the Ip’s depend smoothly on p, it follows that

⋃
p∈Rn Gp is a smooth

fibre bundle over Rn with typical fibre Gp0 . Since Rn is contractible, this fibre
bundle is trivial (see [1], Supplement 3.4B), and hence it has a global section
a which yields the desired affine deformation. �

Remark 2. We may see in the same way that a Bn space is a V n space
if, and only if, at least one of the indicatrices is an ellipsoid.

Remark 3. Our above considerations can also be extended to the more
general class of Lagrange spaces. We recall that a Lagrange space with base
manifold Rn is a pair Ln = (Rn,L), where the Lagrangian

L : TRn = Rn × Rn → R, (p, v) 7→ L(p, v)

satisfies the following conditions:
(L1) L is continuous on TRn, smooth on Rn × (Rn \ {0});
(L2) at each point p ∈ Rn, the Hessian of L(p, ·) is of rank n and has a

constant signature over Rn \ {0}.
Observe that the homogeneity of the Lagrangian is not required at all!

Lagrange spaces, their geometry and wide-ranging applications have been ex-
tensively studied by R. Miron and his collaborators, we refer here only to the
recent monographs [2] and [7].
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In this paper we have no possibility for an effective generalization of our
results in a Lagrangian setting, we mention only a possible transition from
special Finslerian structures to corresponding special Lagrangian structures:

Minkowski space Mn = (Rn,F) → Lagrange-Minkowski space LMn =
(Rn,LM), where LM does not depend on the position.

Generalized Berwald space Bn = (Rn,F)→ generalized Lagrange-Berwald
space LBn = (Rn,LB), admitting LB-norm preserving linear connection in TRn.

Then we also have LBn =aLMn in the sense that LB(p, v)=LM(a−1
p (p, v))

for all (p, v) ∈ TRn, where a is an affine deformation in Rn.

5. CONFORMAL RELATIONS

Two Finsler functions F1, F2 over Rn are said to be conformally related if
there exists a positive smooth function σ : Rn → R such that F2 = (σ ◦pr1)F1

where pr1 : TRn = Rn × Rn → Rn is the first projection. Then, we also say
that the Finsler manifolds (Rn,F1) and (Rn,F2) are conformally related. The
conformal relation is called homothetic if the function σ is constant. By a
proper conformal relation we mean a non-homothetic conformal relation.

Claim. Minkowski spaces do not admit proper conformal relations.

Proof. Suppose that (Rn,G1) and (Rn,G2) are conformally related Min-
kowski spaces, i.e., G2 = (σ ◦ pr1)G1, where σ : Rn → R is a positive smooth
function. Then for each (p, v) ∈ TRn we have G2(p, v) = σ(p)G1(p, v). Since
G1 and G2 do not depend on the position, this implies that σ is constant. �

Theorem 7. If a Finsler space is properly conformal to a Minkowski
space, then it is a proper generalized Berwald space.

Proof. Suppose that Fn = (Rn,F) is properly conformal to the Minkowski
space M = (Rn,G). Then, by definition, F = (σ ◦ pr1)G, where σ : Rn → R is
a non constant positive smooth function. Consider the affine deformation

a : p ∈ Rn 7→ ap := σ(p)1TpRn ∈ GL(TpRn).

In terms of tensor components, ap = (aj
i (p)) = σ(p)(δi

j). The inverse of ap is

a−1
p =: (bj

i (p)) =
1

σ(p)
(δj

i ).

We have Fn = aMn, so Fn is indeed a generalized Berwald space. We show
that this space does not reduce to a Berwald space. We have only to check
that the torsion T a of the metric linear connection ∇a of Fn = aMn does
not vanish. Applying (11), the Christoffel symbols of ∇a with respect to the
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canonical frame field (Ei)n
i=1 are

Γk
ij = −bl

j(Dia
k
l ) = − 1

σ
δl
j(Di(σδk

l )) = − 1
σ

δk
j Diσ.

Hence, the components of the torsion T a are

T k
ij = Γk

ij − Γk
ji =

1
σ

(δk
i Djσ − δk

j Diσ),

therefore T a vanishes if, and only if,

δk
i Djσ − δk

j Diσ = 0, i, j, k ∈ {1, . . . , n}.
With the choice i = k and j 6= k we find that

Djσ = 0, j ∈ {1, . . . , n} \ {k}.
Since k may be chosen arbitrarily, from this it follows that σ is a constant
function. But this is impossible, since the conformal relation is proper. �

Theorem 8. Two generalized Berwald spaces Bn
1 = (V n

1 ,Mn
1 ) and Bn

2 =
(V n

2 ,Mn
2 ) are in conformal relation if, and only if, Mn

1 and Mn
2 are isometric,

and V n
1 is conformal to V n

2 .

Proof. Let Bn
1 = a1Mn

1 , Bn
2 = a2Mn

2 , where, with the notation of Sec-
tion 3 (b), Mn

1 = (Rn, I1), Mn
2 = (Rn, I2). The associated Riemannian spaces

V n
1 and V n

2 are the affine deformations of the Euclidean space En = (Rn, S),
so V n

i = (Rn, Qi), where Qi = aiS, i ∈ {1, 2} (see Theorem 3). In terms of the
indicatrix bundles,

Bn
i = (Rn, Īi), Īi = aiIi, i ∈ {1, 2}.

If Bn
1 and Bn

2 are conformally related, there exists a positive smooth
function σ : Rn → R such that Ī1 = σĪ2 (i.e., Ī1(p) = σ(p)Ī2(p) for all p ∈ Rn).
Then

a1I1 = Ī1 = σĪ2 = σa2I2,

whence
I1 = σa−1

1 ◦ a2I2,

which implies that σa−1
1 ◦ a2 does not depend on the position. Hence, after a

rescaling, I1 = I2, therefore Mn
1 and Mn

2 are isometric. Relation

σa−1
1 ◦ a2 = identity

implies a1 = σa2, whence

Q1 = a1S = a1 ◦ a−1
2 Q2 = σQ2,

which proves that V n
1 and V n

2 are conformally related.
Conversely, if Mn

1 = Mn
2 , and V n

1 = (Rn, Q1) is conformal to V n
2 =

(Rn, Q2), then I1 = I2 and Q2 = σQ1 imply that a2S = σa1S. Hence a2 = σa1,
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therefore a2I2 = σa1I1 and so we have Ī2 = σĪ1. This means that Bn
1 is

conformal to Bn
2 . �
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