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P (Xs ∈ As, Xs+1 ∈ As+1, . . . , Xt ∈ At)
IN THE MARKOV CHAIN CASE:

FROM AN UPPER BOUND TO A METHOD

UDREA PĂUN

Let (Xn)n≥0 be a finite Markov chain with state space S and transition matrices
(Pn)n≥1. (The case when S is countable can be considered similarly.) Let 0 ≤ s < t
(s, t ∈ N). Let As, As+1, . . . , At ⊆ S, As, As+1, . . . , At 6= ∅, S. We show that

P (Xs ∈ As, Xs+1 ∈ As+1, . . . , Xt ∈ At) ≤ α(Qs,t),

where α = 1 − α, α is the Dobrushin ergodicity coefficient, and Qs,t :=
Qs+1Qs+2 . . . Qt, Qs+1, Qs+2, . . . , Qt are matrices which depend on (As, As+1)
and Ps+1, (As+1, As+2) and Ps+2, . . . , (At−1, At) and Pt, respectively. This result
and others (old or new results) lead to a new method for bounding certain pro-
babilities P (B), where, e.g., B = {X ∈ A}, X is a discrete random variable and
A ⊆ R, 0 < |A| < ∞. To illustrate our method, we give upper bounds for the
reliability of a k-out-of-v: F system and, more generally, of a weighted k-out-of-v:
F system and for the reliability of a consecutive-k-out-of-v: F system.
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1. AN UPPER BOUND

In this section, using ergodicity coefficients, we give an upper bound for
P (Xs ∈ As, Xs+1 ∈ As+1, . . . , Xt ∈ At), 0 ≤ s < t, in the finite Markov
chain case, i.e., when (Xn)n≥0 is a finite Markov chain with state space S and
As, As+1, . . . , At ⊆ S, As, As+1, . . . , At 6= ∅, S. This result and others (old or
new results) lead to a new method for bounding certain probabilities P (B),
where, e.g., B = {X ∈ A}, X is a discrete random variable and A ⊆ R,
0 < |A| <∞ (|A| denotes the cardinal of A), see Section 2.
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In this article, a vector is a row vector and a stochastic matrix is a row
stochastic matrix.

Set
〈m〉 = {1, 2, . . . ,m}, m ≥ 1,

Sm,n = {P | P is a stochastic m× n matrix},

Nm,n = {P | P is a nonnegative m× n matrix},

Nm = Nm,m, and Sm = Sm,m.

Consider a finite Markov chain (Xn)n≥0 with state space S = 〈r〉 and
transition matrices (Pn)n≥1. (We use S = 〈r〉 for simplification; S can be any
finite set.) We also shall refer to it as the (finite) Markov chain (Pn)n≥1 (with
state space S = 〈r〉). Define

Pm,n = Pm+1Pm+2 . . . Pn = ((Pm,n)ij)i,j∈S , ∀m,n, 0 ≤ m < n.

(The entries of a matrix Z will be denoted Zij .)
Let P = (Pij) ∈ Sm,n (more generally, P ∈ Nm,n). Let ∅ 6= U ⊆ 〈m〉 and

∅ 6= V ⊆ 〈n〉. Set

PU = (Pij)i∈U, j∈〈n〉, P V = (Pij)i∈〈m〉, j∈V , P V
U = (Pij)i∈U, j∈V

(PU , P
V , and P V

U are matrices; e.g., if m = 2 and n = 3, then, e.g.,

P{1} = ( P11 P12 P13 ), P {2} =
(
P12

P22

)
, and P

{3}
{1} = (P13)),

α(P ) = min
1≤i,j≤m

n∑
k=1

min(Pik, Pjk)

(α(P ) is called the Dobrushin ergodicity coefficient of P (see, e.g., [2] or [7,
p. 56])), and

α(P ) =
1
2

max
1≤i,j≤m

n∑
k=1

|Pik − Pjk|.

Theorem 1.1. (i) α(P ) = 1− α(P ), ∀P ∈ Sm,n.
(ii) ‖µP − νP‖1 ≤ ‖µ− ν‖1α(P ), ∀µ, ν, µ and ν are probability distribu-

tions on 〈m〉, ∀P ∈ Sm,n.
(iii) α(PQ) ≤ α(P )α(Q), ∀P ∈ Sm,n, ∀Q ∈ Sn,p.

Proof. (i) See, e.g., [7, p. 57] or [8, p. 144].
(ii) See, e.g., [2] or [8, p. 147].
(iii) See, e.g., [2], or [7, pp. 58–59], or [8, p. 145]. �
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Let (Xn)n≥0 be a Markov chain with state space S = 〈r〉. Let 0 ≤ s < t
(s, t ∈ N). Let As, As+1, . . . , At ⊆ S, As, As+1, . . . , At 6= ∅, S. Consider the
fictive states s, s+ 1, . . . , t ( s, s+ 1, . . . , t /∈ S). Set

Qu = ((Qu)ij)i∈Au−1∪{u−1}, j∈Au∪{u},

(Qu)ij =


(Pu)ij if i ∈ Au−1, j ∈ Au,

1−
∑

k∈Au

(Pu)ik if i ∈ Au−1, j = u,

0 if i = u− 1, j ∈ Au,

1 if i = u− 1, j = u,

∀u ∈ {s+1, s+2, . . . , t}, ∀i ∈ Au−1∪{u− 1}, ∀j ∈ Au∪{u}; we consider that
(s, s+ 1), (s+ 1, s+ 2), . . . , (t− 1, t) are the last entries of Qs+1, Qs+2, . . . , Qt,
respectively.

Below we give our the best result of this section.

Theorem 1.2. Under the above conditions we have

P (Xs ∈ As, Xs+1 ∈ As+1, . . . , Xt ∈ At) ≤ α(Qs,t)

(Qs,t := Qs+1Qs+2 . . . Qt).

Proof. Case 1. ∃n ∈ {s, s+1, . . . , t} such that P (Xn ∈ An) = 0. Obvious
(because

P (Xs ∈ As, Xs+1 ∈ As+1, . . . , Xt ∈ At) ≤ P (Xn ∈ An) = 0

and
α(P ) ≥ 0, ∀P ∈ Sg,h).

Case 2. P (Xn ∈ An) > 0, ∀n ∈ {s, s + 1, . . . , t}. Let pu = ((pu)i)i∈S

be the probability distribution of the chain (Xn)n≥0 at time u, ∀u ≥ 0. Let
qs = ((qs)i)i∈As∪{s} be a probability vector (on As ∪ {s}), where

(qs)i :=

 (ps)i if i ∈ As,

1−
∑

k∈As

(ps)k if i = s,

∀i ∈ As ∪ {s}; we consider that (qs)s is the last component of qs. Set

Ut+1 = ((Ut+1)ij)i∈At∪{t}, j∈S ,

(Ut+1)At = (Pt+1)At , (Ut+1){t} = (0, 0, . . . , 0, 1);

we consider that (Ut+1){t} is the last row of Ut+1.

Consider the Markov chain (Yn)n≥s with state spaces As ∪ {s}, As+1 ∪
{s+ 1}, . . . , At∪{t}, S, S, . . . , initial probability distribution qs, and transition
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matrices (Vn)n≥s+1, where

Vn :=


Qn if n ∈ {s+ 1, s+ 2, . . . , t},
Ut+1 if n = t+ 1,
Pn if n ≥ t+ 2

(this is a Markov chain with time varying state space, see, e.g., [7, p. 215]).
We have

P (Xs ∈ As, Xs+1 ∈ As+1, . . . , Xt ∈ At) =

=
∑

is∈As
is+1∈As+1

...
it∈At

P (Xs = is, Xs+1 = is+1, . . . , Xt = it) =

=
∑

is∈As
is+1∈As+1

...
it∈At

P (Xs = is)P (Xs+1 = is+1|Xs = is) . . . P (Xt = it|Xt−1 = it−1) =

=
∑

is∈As
is+1∈As+1

...
it∈At

(ps)isPis,is+1...Pit−1,it =
∑

is∈As
is+1∈As+1

...
it∈At

(qs)isQis,is+1...Qit−1,it =

=
∑

is∈As
is+1∈As+1

...
it∈At

P (Ys = is)P (Ys+1 = is+1|Ys = is) . . . P (Yt = it|Yt−1 = it−1) =

=
∑

is∈As
is+1∈As+1

...
it∈At

P (Ys = is, Ys+1 = is+1, . . . , Yt = it) =

= P (Ys ∈ As, Ys+1 ∈ As+1, . . . , Yt ∈ At) = P (Yt ∈ At).

To finish the proof we show that

P (Yt ∈ At) ≤ α(Qs,t).

To show this, let πs = (0, 0, . . . , 0, 1) ∈ Rws , where ws := |As| + 1 and πt =
(0, 0, . . . , 0, 1) ∈ Rwt , where wt := |At| + 1. Since (Qs,t){s} = πt, we have
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πsQs,t = πt. Let qu be the probability distribution of chain (Yn)n≥s at time
u− s, ∀u ≥ s. Further, by Theorem 1.1(ii), we have

‖qt − πt‖1 = ‖qsQs,t − πsQs,t‖1 ≤ ‖qs − πs‖1α(Qs,t) ≤ 2α(Qs,t).

On the other hand,

‖qt − πt‖1 =
∑
i∈At

(qt)i + 1− (qt)t = 2
∑
i∈At

(qt)i.

It follows that ∑
i∈At

(qt)i ≤ α(Qs,t)

and, therefore,
P (Yt ∈ At) =

∑
i∈At

(qt)i ≤ α(Qs,t). �

Definition 1.3. Let (Pn)n≥1 be a Markov chain with state space S = 〈r〉.
A state i ∈ S is called absorbing if (Pn)ii = 1, ∀n ≥ 1.

Below we give an important special case of Theorem 1.2.

Theorem 1.4. Let (Xn)n≥0 be a Markov chain with state space S = 〈r〉
and transition matrices (Pn)n≥1. Suppose that r is an absorbing state. Then

P (Xn < r) ≤ α(P0,n), ∀n ≥ 1

(this inequality also holds for n = 0 if we set P0,0 = Ir).

Proof. By the proof of Theorem 1.2,

P (X0 < r,X1 < r, . . . ,Xn < r) = P (Xn < r) ≤ α(P0,n), ∀n ≥ 1,

because, in this case, the chain (Yn)n≥0 from the proof of Theorem 1.2 (s = 0)
is equal to (Xn)n≥0 a.s. (almost surely) (in fact, we can work with (Xn)n≥0

directly, i.e., without to use the intermediary chain (Yn)n≥0). �

Remark 1.5. By the proof of Theorems 1.2 and 1.4,

P (Xn < r) =
1
2
‖pn − π‖1, ∀n ≥ 0,

where pn is the probability distribution at time n of chain (Xn)n≥0 from Theo-
rem 1.4, ∀n ≥ 0, and π = (0, 0, . . . , 0, 1) ∈ Rr.

2. A METHOD

In this section, based on the inequality P (Xn < r) ≤ α(P0,n), ∀n ≥ 0,
from Theorem 1.4, we give upper bounds for the reliability of a k-out-of-v: F
system and, more generally, of a weighted k-out-of-v: F system and for the
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reliability of a consecutive-k-out-of-v: F system. To make this, we need upper
bounds for α(P0,v) (see Theorems 1.1 and 2.1); obviously, it is desirable to
compute α(P0,v), but this is impossible if k or v is too large.

Set
Par(E) = {∆ | ∆ is a partition of E},

where E is a nonempty set. We shall agree that the partitions do not contain
the empty set.

Set

({i})i∈{s1,s2,...,st} = ({s1}, {s2}, . . . , {st});
({i})i∈{s1,s2,...,st} ∈ Par({s1, s2, . . . , st}).

E.g., ({i})i∈〈m〉 = ({1}, {2}, . . . , {m}) ∈ Par(〈m〉).
Below we give part of Theorem 1.8 from [15] and this in the stochastic

case only; this is an important result and its proof is based on the G method
from the ∆-ergodic theory. (For the general ∆-ergodic theory, see, e.g., [12–15]
and the references therein.)

Theorem 2.1. Let P1 ∈ Sm1,m2 , P2 ∈ Sm2,m3 , . . . , Pn ∈ Smn,mn+1 . Let
∆1 = (〈m1〉), ∆2 ∈ Par(〈m2〉), . . . , ∆n ∈ Par(〈mn〉), ∆n+1 = ({i})i∈〈mn+1〉.
Consider the matrices Ll = ((Ll)V W )V ∈∆l,W∈∆l+1

, l ∈ 〈n〉 ((Ll)V W is the
entry (V,W ) of matrix Ll), where

(Ll)V W := min
i∈V

∑
j∈W

(Pl)ij , ∀l ∈ 〈n〉, ∀V ∈ ∆l, ∀W ∈ ∆l+1.

Then
α(P1P2 . . . Pn) ≥

∑
K∈∆n+1

(L1L2 . . . Ln)〈m1〉K .

(Since L1L2 . . . Ln is an 1× |〈mn+1〉| matrix, it can be thought as being a row
vector, but above we used and below we shall use the matrix notation for its en-
tries instead of the vector one. Above the matrix notation (L1L2 . . . Ln)〈m1〉K
was used instead of the vector one (L1L2 . . . Ln)K because, in this article, the
notation AU , where A ∈ Np,q and ∅ 6= U ⊆ 〈p〉, means something different.)

Proof. See [15]. �

Set
〈〈m〉〉 = {0, 1, . . . ,m}, m ≥ 0,

and
supp ν = {i | i ∈W and νi > 0}

(the support of ν), where W is a finite nonempty set and ν = (νi)i∈W is a
probability distribution on W .
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Definition 2.2 (see also [12]). A Markov chain with state space S = 〈〈k〉〉,
where k ≥ 1 (k ∈ N), initial probability distribution ψ0 with suppψ0 ⊆
〈〈k − 1〉〉, and transition matrices

Pn =



pn . . . qn
pn . . . qn

. . . . . . . .

pn . . . qn
. . . . . . . .

pn qn
1


, n ≥ 1,

with (Pn)i,i+wn = qn, ∀n ≥ 1, ∀i ∈ S, i + wn ≤ k, and (Pn)ik = qn, ∀n ≥ 1,
∀i ∈ S − {k}, i+wn > k, where wn is a natural number, 1 ≤ wn ≤ k, ∀n ≥ 1,
and (Pn)kk = 1, ∀n ≥ 1 (i.e., k is an absorbing state) is called weighted k-
out-of-∞: F. A weighted k-out-of-∞: F Markov chain with wn = 1, ∀n ≥ 1, is
called k-out-of-∞: F. A 1-out-of-∞: F Markov chain (k = 1) is called series.
We call wn the weight of Pn, ∀n ≥ 1.

Consider a weighted v-component system (v ≥ 1), i.e., a system with v
components, the component n having a weight, say, wn, ∀n ∈ 〈v〉. We only
work with independent components. Suppose that wn ≥ 1 and wn ∈ N. The
component n fails with probability, say, qn, ∀n ∈ 〈v〉. A weighted k-out-of-v:
F system is a weighted v-component system which fails if and only if the total
weight of failed components is at least k (see, e.g., [9] and [10, p. 279]). Fol-
lowing the Markov chain method (see [3]; see, e.g., also [1, pp. 13–14], [5–6],
and [9–10]), this system determines v stochastic matrices, say, P1, P2, . . . , Pv

(we associate a stochastic matrix with each component of system), where Pn

is identical with Pn from Definition 2.2, ∀n ∈ 〈v〉. To can work with Markov
chains, since the matrices P1, P2, . . . , Pv do not determine a Markov chain, we
consider a weighted k-out-of-∞: F Markov chain, say, (Xn)n≥0 having the first
v matrices even these ones (“∞” from weighted k-out-of-∞: F was suggested
of the fact that any chain has an infinite number of transition matrices (obvi-
ously, it is possible as some of them or even all be identical)). Further, using
this weighted k-out-of-∞: F Markov chain framework and the fact that the
reliability of a v-component system, Rv, is the probability that this work, it
follows that the reliability of above weighted k-out-of-v: F system, Rv = Rv(k),
is equal to P (Xv < k), i.e.,

Rv = Rv(k) = P (Xv < k).

Consequently, to give upper bounds for Rv = Rv(k), we can work in the
weighted k-out-of-∞: F Markov chain framework. We shall use this framework
and, therefore, we shall give upper bounds for P (Xv < k).
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Below we give a family of upper bounds for P (Xv < k) of a k-out-of-∞:
F Markov chain (equivalently, we give a family of upper bounds for reliability
Rv = Rv(k) of a k-out-of-v: F system (by definition, this is a v-component
system which fails if and only if at least k of the v components fails, see, e.g.,
[10, p. 231])).

Theorem 2.3. Let (Xn)n≥0 be a k-out-of-∞: F Markov chain. Let v ≥ k.
Let n1, n2, . . . , nk ≥ 1 (they are integer numbers) such that v = n1 +n2 + · · ·+
nk. Then

P (Xv < k) ≤ 1− (1− p1p2 . . . pn1)(1− pn1+1pn1+2 . . . pn1+n2) . . .

. . . (1− pn1+n2+···+nk−1+1pn1+n2+···+nk−1+2 . . . pn1+n2+···+nk−1+nk
).

Proof. By Theorem 1.4,

P (Xv < k) ≤ α(P0,v), ∀v ≥ 0.

We now give upper bounds for α(P0,v) using Theorems 1.1(i) and 2.1.
To make this, we consider the matrices

P0,n1 , Pn1,n1+n2 , . . . , Pn1+n2+···+nk−1,n1+n2+···+nk−1+nk

and partitions

∆1 = (〈〈k〉〉), ∆2 = ({0}, 〈k〉), ∆3 = ({0}, {1}, {2, 3, . . . , k}), . . . ,
∆k = ({0}, {1}, . . . , {k − 2}, {k − 1, k}), ∆k+1 = ({i})i∈〈〈k〉〉

(recall that ({i})i∈〈〈k〉〉 = ({0}, {1}, . . . , {k})). Since

Ps,t =


ps+1ps+2 . . . pt

ps+1ps+2 . . . pt

· · · · ·
ps+1ps+2 . . . pt

1

+ U(s,t),

∀s, t, 0 ≤ s < t, where U(s,t) is a strictly upper triangular matrix, ∀s, t,
0 ≤ s < t, and (see Theorem 2.1; for labeling the rows and columns of ma-
trices L1, L2, . . . , Lk, we suppose that the partitions ∆1,∆2, . . . ,∆k+1 are or-
dered sets)

L1 = L1(P0,n1) = (0, 1− p1p2 . . . pn1)
(L1 = L1(P0,n1) means that L1 depends on P0,n1),

(L2){〈k〉} = (L2(Pn1,n1+n2)){〈k〉} = (0, 0, 1− pn1+1pn1+2 . . . pn1+n2)

((L2){〈k〉} is the last row of L2 – this is the row 〈k〉 of L2; we only need this
row because (L1)〈〈k〉〉,{0} = 0), . . . ,

(Lk){{k−1,k}} = (Lk(Pn1+n2+···+nk−1,n1+n2+···+nk−1+nk
)){{k−1,k}} =

= (0, 0, . . . , 0, 1− pn1+n2+···+nk−1+1pn1+n2+···+nk−1+2 . . . pn1+n2+···+nk−1+nk
)



9 P (Xs ∈ As, Xs+1 ∈ As+1, . . . , Xt ∈ At) in the Markov chain case 153

((Lk){{k−1,k}} is the last row of Lk; we only need this row because, for k ≥ 2,

(L1L2 . . . Lk−1)
{{0},{1},...,{k−2}}
{〈〈k〉〉} = (0, 0, . . . , 0)), we have

L1L2 . . . Lk = (0, 0, . . . , 0, z),

where

z := (1− p1p2 . . . pn1)(1− pn1+1pn1+2 . . . pn1+n2) . . .

. . . (1− pn1+n2+···+nk−1+1pn1+n2+···+nk−1+2 . . . pn1+n2+···+nk−1+nk
).

Further, by Theorem 2.1,

α(P0,v) = α(P0,n1Pn1,n1+n2 . . . Pn1+n2+···+nk−1,n1+n2+···+nk−1+nk
) ≥

≥
∑

J∈∆k+1

(L1L2 . . . Lk)〈〈k〉〉J = z.

Finally, by Theorem 1.1(i),

α(P0,v) ≤ 1− z. �

Problem 2.4. How do we choose the numbers n1, n2, . . . , nk in Theo-
rem 2.3 to obtain an upper bound for P (Xv < k) as small as possible? Obvi-
ously, we need that 1− z (see the proof of Theorem 2.3 for the definition of z)
be as small as possible; to fulfil this thing, one way is to choose the numbers
n1, n2, . . . , nk such that the products

p1p2 . . . pn1 ,

pn1+1pn1+2 . . . pn1+n2 , . . . ,

pn1+n2+···+nk−1+1pn1+n2+···+nk−1+2 . . . pn1+n2+···+nk−1+nk

be as small as possible.

Example 2.5. Let (Xn)n≥0 be a 10-out-of-∞: F Markov chain. If p1 =
p2 = · · · = 1

2 (a homogeneous instance), then, for v = 100 and n1 = n2 =
· · · = n10 = 10 (k = 10), we have

P (X100 < 10) ≤ 1−
(
1−

(
1
2

)10)10
' 9. 7228× 10−3

while, for v = 200 and n1 = n2 = · · · = n10 = 20, we have

P (X200 < 10) ≤ 1−
(
1−

(
1
2

)20)10
' 9. 5367× 10−6.

Further, if we consider p1 = p2 = · · · = p100 = 1
4 and p101 = p102 = · · · = 1

2 (a
nonhomogeneous instance), then, for v = 200 and n1 = n2 = · · · = n10 = 20,
we have

P (X200 < 10) ≤ 1−
(
1−

(
1
4

)20)5 (
1−

(
1
2

)20)5
' 4. 7684× 10−6.
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Using Theorem 2.1 directly, we can obtain better upper bounds for
P (Xv < 10) of each chain from Example 2.5. E.g., we consider, for v = 100,
the first chain from Example 2.5. Taking, e.g., the matrices

P 20, P 20, P 20, P 20, P 20

and partitions

∆1 = (〈〈10〉〉), ∆2 = ({0, 1}, {2, 3, . . . , 10}),
∆3 = ({0}, {1}, {2, 3}, {4, 5, . . . , 10}),

∆4 = ({0}, {1}, {2}, {3}, {4, 5}, {6, 7, . . . , 10}),
∆5 = ({0}, {1}, . . . , {5}, {6, 7}, {8, 9, 10}), ∆6 = ({i})i∈〈〈10〉〉,

then

P (X100 < 10) ≤ 1−
(

1− 21
220

)5

' 1. 0013× 10−4

because(
1
2

1
2

0 1
2

)n

=

(
1
2n

n
2n

0 1
2n

)
,

(
1
2

1
2

0 1

)n

=

(
1
2n 1− 1

2n

0 1

)
, ∀n ≥ 1.

Moreover, since(
p q
0 p

)n

=
(
pn npn−1q
0 pn

)
,

(
p q
0 1

)n

=
(
pn 1− pn

0 1

)
, ∀n ≥ 1,

we can give other general upper bounds for P (Xv < k) of a k-out-of-∞: F
Markov chain in the homogeneous case. For the nonhomogeneous case, we can
use a computer for evaluating the product of matrices(

ps qs
0 ps

)(
ps+1 qs+1

0 ps+1

)
. . .

(
pt qt
0 pt

)
for some s ≥ 1 and t > s. Further, to obtain more and more general or
special upper bounds for P (Xv < k) of a k-out-of-∞: F Markov chain in the
homogeneous case, we can consider p q 0

0 p q
0 0 p

n

,

where n ≥ 1. Etc.
To generalize Theorem 2.3 for weighted k-out-of-∞: F Markov chains we

need the next remark.

Remark 2.6. Let (Pn)n≥1 be a weighted k-out-of-∞: F Markov chain.
(a) By Theorems 1.1(iii) and 1.4,

P (Xv < k) ≤ α(Pv1,v2), ∀v1, v2, 0 ≤ v1 ≤ v2 ≤ v
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(if v1 = v2 := h, then we set Ph,h = Ik+1).
(b) If Ps+1, Ps+2, . . . , Pt (s < t) are matrices with weights ws+1, ws+2, . . . ,

wt, respectively (see Definition 2.2 again), then, by induction,

(Ps,t)i,i+j = 0, ∀i ∈ 〈〈k − 2〉〉, ∀j, 0 < j < min
s<l≤t

wl, i+ j < k.

The result below is a generalization of Theorem 2.3 for k, v ≥ 2.

Theorem 2.7. Let (Xn)n≥0 be a weighted k-out-of-∞: F Markov chain.
Let k, v ≥ 2. Let t ≥ 1. Let 0 ≤ m0 < m1 < . . . < mt < mt+1 ≤ v. Set
ul = min(wml+1, wml+2, . . . , wml+1

), ∀l ∈ 〈〈t〉〉. If

u0 + u1 + · · ·+ ut−1 < k ≤ u0 + u1 + · · ·+ ut−1 + ut

(equivalently,

u0 + u1 + · · ·+ ut−1 + 1 < |〈〈k〉〉| ≤ u0 + u1 + · · ·+ ut−1 + ut + 1),

then

P (Xv < k) ≤ 1− (1− pm0+1pm0+2 . . . pm1)(1− pm1+1pm1+2 . . . pm2) . . .

. . . (1− pmt+1pmt+2 . . . pmt+1).

Proof. It follows by Theorems 1.1(i), 1.4, and 2.1 and Remark 2.6. To
see this, we take the matrices

Pm0,m1 , Pm1,m2 , . . . , Pmt,mt+1

and partitions

∆1 = (〈〈k〉〉), ∆2 = ({0, 1, . . . , u0 − 1}, {u0, u0 + 1, . . . , k}),
∆3 = ({0}, {1}, . . . , {u0 − 1}, {u0, u0 + 1, . . . , u0 + u1 − 1},

{u0 + u1, u0 + u1 + 1, . . . , k}), . . . ,
∆t+1 = ({0}, {1}, . . . , {u0 + u1 + · · ·+ ut−2 − 1},

{u0 + u1 + · · ·+ ut−2, u0 + u1 + · · ·+ ut−2 + 1, u0 + u1 + · · ·+ ut−2 + ut−1 − 1},
{u0 + u1 + · · ·+ ut−2 + ut−1, u0 + u1 + · · ·+ ut−2 + ut−1 + 1, . . . , k}),

∆t+2 = ({i})i∈〈〈k〉〉.

(See the proof of Theorem 2.3 again.) �

Remark 2.8. If we have a k-out-of-v: F system, then 0 < k ≤ v while, if
we have a weighted k-out-of-v: F system, then 0 < k ≤ v or 0 < v < k (see,
e.g., [10, pp. 231 and 279]). Theorem 2.7 works when 2 ≤ k ≤ v or 2 ≤ v < k.

Problem 2.9. How do we choose the numbers m0,m1, . . . ,mt+1 in Theo-
rem 2.7 to obtain an upper bound for P (Xv < k) as small as possible? (See
Problem 2.4 again.)

We now deal with consecutive-k-out-of-v: F systems. Consider a system
with v independent components which are linearly connected; such a system
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which malfunctions if and only if at least k consecutive components fail is
called (linear) consecutive-k-out-of-v: F system (see, e.g., [10, p. 325]).

To give upper bounds for the reliability of a consecutive-k-out-of-v: F
system (i.e., for the probability that this system work), we act as in the case of
weighted k-out-of-v: F systems, i.e., since we can use the Markov chain method,
we associate a consecutive-k-out-of-∞: F Markov chain with the consecutive-
k-out-of-v: F system (as in the weighted k-out-of-v: F case, this association is
not unique).

Definition 2.10 (see also [12]). A Markov chain with state space S = 〈〈k〉〉
(k ≥ 1), initial probability distribution ψ0 with suppψ0 ⊆ 〈〈k − 1〉〉, and
transition matrices

Pn =


pn qn
pn qn
. . . . . .

pn qn
1

 , n ≥ 1,

is called consecutive-k-out-of-∞: F.

Theorem 2.11. Let (Xn)n≥0 be a consecutive-k-out-of-∞: F Markov
chain. Set h = h(k, v) = [ v

k ], ∀v ≥ 0. ([x] denotes the integer part of x
(x ∈ R), i.e., [x] := max{k | k ∈ Z and k ≤ x}.) Then

P (Xv < k) ≤ (1− q1q2 . . . qk)(1− qk+1qk+2 . . . q2k) . . .

. . . (1− q(h−1)k+1q(h−1)k+2 . . . qhk), ∀v ≥ k.

Proof. By Theorem 2.1, taking the matrices

Pm+1, Pm+2, . . . , Pm+k (m ≥ 0)

and partitions

∆1 = (〈〈k〉〉), ∆2 = ({0}, 〈k〉), ∆3 = ({0}, {1}, {2, 3, . . . , k}), . . . ,
∆k = ({0}, {1}, . . . , {k − 2}, {k − 1, k}),

∆k+1 = ({i})i∈〈〈k〉〉,

we have
α(Pm,m+k) ≥ qm+1qm+2 . . . qm+k.

In fact,
α(Pm,m+k) = qm+1qm+2 . . . qm+k, ∀m ≥ 0

(see [12, Theorem 2.13]); therefore, this is an example where Theorem 2.1
gives the best lower bound for α(Pm,m+k). Further, by Theorems 1.1 ((i) and
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(iii)) and 1.4, we have

P (Xv < k) ≤ α(P0,v) ≤ α(P0,k)α(Pk,2k) . . . α(P(h−1)k,hk) ≤
≤ (1− q1q2 . . . qk)(1− qk+1qk+2 . . . q2k) . . . (1− q(h−1)k+1q(h−1)k+2 . . . qhk),

∀v ≥ k. �

Remark 2.12. As to Theorem 2.11, if, in particular, q1 = q2 . . . := q, then

P (Xv < k) ≤ (1− qk)h, ∀v ≥ k

(by following a different approach, Muselli [11] also obtained this inequality).
To give better upper bounds for P (Xv < k) of a consecutive-k-out-of-∞:

F Markov chain (Pn)n≥1 and of the others by Theorems 1.1, 1.4, and 2.1, we
must obtain information about certain entries of the product Pm,n for some
m ≥ 0 and n > m. Recall that it is possible that this information be obtained
by computer (see, e.g., Example 2.5 and after it).

The Markov chain method is used for computing the probabilities of
certain events which arise in the distribution theory and related fields (runs,
patterns, reliability theory, hypothesis testing, quality control, etc., see, e.g.,
[1], [3], [4–6], and [9–11]). Theorems 1.1, 1.2, and 2.1, being general results,
could be applied to give upper bounds for these probabilities (see Theorems 1.2
and 1.4 and this section again).

For other methods on lower and/or upper bounds for the probabilities
of certain events which arise in the distribution theory and related fields, see,
e.g., [1] and [10, Subsection 5.8] and the references therein. A drawback of
the majority of these studies consists in the fact that they only refer to the
homogeneous case. For our bounding method, it does not count if the chains
are homogeneous or nonhomogeneous.
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