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We consider a conditional quantile regression model for spatial data. More pre-
cisely, given a strictly stationary random field Zi = (Xi, Yi)i∈NN , we investigate
a kernel estimate of the conditional quantile regression function of the univariate
response variable Yi given the functional variable Xi. The main purpose of the
paper is to prove the convergence (with rate) in Lp norm and the asymptotic
normality of the estimator.
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1. INTRODUCTION

Conditional quantile estimation is an important field in statistics which
dates back to Stone (1977) and has been widely studied in the non-spatial
case. It is useful in all domain of statistics, such as time series, survival ana-
lysis and growth charts, among others, see Koenker ([20], [21]) for a review.
There exist an extensive literature and various nonparametric approaches in
conditional quantile estimation in the non spatial case for independent samples
and dependent non-functional or functional observations. Among the many
papers dealing with conditional quantile estimation in finite dimension, one
can refer, for example, to key works of Portnoy [27], Koul and Mukherjee [23],
Honda [19].

Potential applications of quantile regression to spatial data are number
less. Indeed, there is an increasing number of situations coming from different
fields of applied sciences (soil science, geology, oceanography, econometrics,
epidemiology, environmental science, forestry, etc.), where the influence of a
vector of covariates on some response variable is to be studied in a context of
spatial dependence. The literature on spatial models is relatively abundant,
see for example, Guyon [15], Anselin and Florax [3], Cressie [7] or Ripley [29]
for a list of references.
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In our knowledge, only the papers of Koencker and Mizera [22], Hallin et
al. [18], Abdi et al. ([1], [2]), Dabo-Niang and Thiam [12] have paid attention
to the study of nonparametric quantile regression for finite dimensional ran-
dom fields while Laksaci and Maref [24] have considered infinite dimensional
fields. This last work deals with almost sure consistency of the conditional
consistency of a kernel conditional quantile estimate. The work of Hallin et al.
[16] deals with local linear spatial conditional quantile regression estimation.
The method of Koencker and Mizera [22] is a spatial smoothing technique
rather than a spatial (auto)regression one and do not take into account the
spatial dependency structure of the data. The results of Abdi et al. ([1], [2])
concerned respectively, consistency in p-mean (p > 1) and asymptotic normal-
ity and of a kernel estimate of the conditional regression function for spatial
processes. Dabo-Niang and Thiam [12] considered the L1 consistency of the
local linear and double kernel conditional quantile estimate.

As in the non-spatial case, conditional quantile estimation is useful for
some non-parametric prediction models and is used as an alternative to clas-
sical spatial regression estimation models for non-functional data (see Biau and
Cadre [4], Lu and Chen ([25], [26]), Hallin, Lu and Tran [16], Dabo-Niang and
Yao [10]). Spatial conditional quantile is of wide interest in the modeling of
spatial dependence and in the construction of confidence (predictive) intervals.
The purpose of this paper is to estimate the conditional quantile regression
for spatial functional data.

Recall that a recent and restrictive attention has been paid to nonpara-
metric estimation of the conditional quantile of a scalar variable Y given a
functional variable (X = Xt, t ∈ R) when observations are over an interval
T ∈ R. The first results concerning the nonparametric quantile estimation
adapted to non-spatial functional data were obtained by Ferraty et al. [13].
Recently, Dabo-Niang and Laksaci [11] stated the convergence in Lp norm
under less restrictive conditions closely related to the concentration properties
on small balls probability of the underlying explanatory variable.

The main purpose of this paper is to extend some of the results on quan-
tile regression to the case of functional spatial processes. In our knowledge, this
work is the first contribution on spatial quantile regression estimation for fun-
ctional variables. Noting that, extending classical nonparametric conditional
quantile estimation for dependent functional random variables to quantile re-
gression for functional random fields, is far from being trivial. This is due to
the absence of any canonical ordering in the space, and of obvious definition
of tail sigma-fields.

The paper is organized as follows. In Section 2, we provide the notations
and the kernel quantile estimates. Section 3 is devoted to assumptions. Sec-
tion 4 is devoted to the Lp convergence and the asymptotic normality results
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of the kernel quantile regression estimate, under mixing assumptions. Proofs
and technical lemmas are given in Section 5.

2. THE MODEL

Consider Zi = (Xi, Yi), i ∈ NN be a F × R-valued measurable strictly
stationary spatial process, defined on a probability space (Ω, A,P), where
(F , d) is a semi-metric space. Let d denotes the semi-metric and N ≥ 1. A
point i = (i1, . . . , iN ) ∈ NN will be referred to as a site. We assume that the
process under study (Zi) is observed over a rectangular domain In = {i =
(i1, . . . , iN ) ∈ ZN , 1 ≤ ik ≤ nk, k = 1, . . . , N}, n = (n1, . . . , nN ) ∈ NN . A
point i will be referred to as a site. We will write n → ∞ if min{nk} → ∞
and |nj

nk
| < C for a constant C such that 0 < C < ∞, for all j, k such that

1 ≤ j, k ≤ N . For n = (n1, . . . , nN ) ∈ NN , we set n̂ = n1 × · · · × nN .
We assume that the Zi’s have the same distribution as (X,Y ) and the

regular version of the conditional probability of Y given X exists and admits
a bounded probability density. For all x ∈ F , we denote respectively by F x

and fx the conditional distribution function and density of Y given X = x.
Let α ∈ ]0, 1[, the αth conditional quantile noted qα(x) is defined by

F x(qα(x)) = α.

To insure existence and unicity of qα(x), we assume that F x is strictly
increasing. This last is estimated by

(1) F̂ x
n (y) =



∑
i∈In

K1

(
d(x,Xi)

an

)
K2

(
y−Yi
bn

)
∑

i∈In
K1

(
d(x,Xi)

an

) if
∑

i∈In
K1

(
d(x,Xi)

an

)
6= 0,

0 else,

where K1 is a kernel, K2 is a distribution function, an (resp. bn) is a sequence
of real numbers which converges to 0 when n →∞.

The kernel estimate q̂α(x) of the conditional quantile qα(x) defined by

F̂ x(q̂α(x)) = α.

One can also use other methods to estimate qα, such as the local linear
method or the reproducing kernel Hilbert spaces method (see Preda, [28]).

In the following, we fix a point x in F such that

P (X ∈ B(x, r)) = φx(r) > 0,

where B(x, h) = {x′ ∈ F | d(x′, x) < h}.
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3. HYPOTHESES

Throughout the paper, when no confusion will be possible, we will denote
by C and C ′ any generic positive constant, and we denote by g(j) the derivative
of order j of a function g. We will use the following hypotheses:

3.1. Nonparametric model conditions

H1: F x is of class C1 and fx(qα(x)) > 0.

H2: ∃δ1 > 0, ∀ (y1, y2) ∈ [qα(x)− δ1, qα(x) + δ1]2, ∀ (x1, x2) ∈ Nx ×Nx,

|F x1(y1)− F x2(y2)| ≤ C
(
db1(x1, x2) + |y1 − y2|b2

)
, b1 > 0, b2 > 0,

where Nx is a small enough neighborhood of x.

H3: There exist C1 and C2, 0 < C1 < C2 < ∞ such that C1I[0,1](t) <
K1(t) < C2I[0,1](t).

H4: K2 is of class C1, of bounded derivative that verifies∫
R
|t|b2 K(1)

2 (t)dt <∞.

3.2. Dependency conditions

In spatial dependent data analysis, the dependence of the observa-
tions has to be measured. Here, we will consider the following two dependence
measures:

3.2.1. Local dependence condition

In order to establish the same convergence rate as in the i.i.d. case
(see Dabo-Niang and Laksaci [10]), we need the following local dependency
condition:

(2)



(i) For all i 6= j, the conditional density of (Yi, Yj) given (Xi, Xj)
exists and is bounded.

(ii) For all k≥2, we suppose that: there exists an increasing
sequence 0 < (vk) < k :
max(maxi1...ik∈In P (d(Xij , x)≤ r, 1≤j≤k), φk

x(r)) = O(φ1+vk
x (r)).
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3.2.2. Mixing condition

The spatial dependence of the process will be measured by means of α-
mixing. Then, we consider the α-mixing coefficients of the field (Zi, i ∈ NN ),
defined by: there exists a function ϕ(t) ↓ 0 as t→∞, such that whenever E,
E′ subsets of NN with finite cardinals,

α(B(E), B(E′)) = sup
B∈B(E), C∈B(E′)

|P(B ∩ C)−P(B)P(C)|(3)

≤ ψ(Card(E),Card(E′))ϕ(dist(E,E′)),

where B(E) (resp. B(E′)) denotes the Borel σ-field generated by (Xi, i ∈ E)
(resp. (Xi, i ∈ E′)), Card(E) (resp. Card(E′)) the cardinality of E (resp. E′),
dist(E,E′) the Euclidean distance between E and E′ and ψ : N2 → R+ is a
symmetric positive function nondecreasing in each variable.

Throughout the paper, it will be assumed that ψ satisfies either

(4) ψ(n,m) ≤ Cmin(n,m), ∀n,m ∈ N

or

(5) ψ(n,m) ≤ C(n+m+ 1)β̃, ∀n,m ∈ N

for some β̃ ≥ 1 and some C > 0. In the following, we will only consider
Condition (4), one can extend easily the asymptotic results proved here in the
case of (5).

We assume also that the process satisfies the following mixing condition:
the process satisfies a polynomial mixing condition

(6)
∞∑
i=1

iδϕ(i) <∞, δ > N(p+ 2), p ≥ 1.

If N = 1, then Xi is called strongly mixing. Many stochastic processes,
among them various useful time series models, satisfy strong mixing properties,
which are relatively easy to check. Conditions (4)–(5) are used in Tran [30],
Carbon et al. [5], and are satisfied by many spatial models (see Guyon [14] for
some examples). In addition, we assume that

H5: ∃0 < τ < (δ − 5N)/2N , η0, η1 > 0, such that n̂τ bn →∞ and

Cn̂
(5+2τ)N−δ

δ
+η0 ≤ φx(an),

where δ is introduced in (6).

Remark 1. If (6) is satisfied, then ϕ(i) ≤ Ci−δ.
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4. MAIN RESULTS

4.1. Weak consistency

This section contains results on pointwise consistency in p-mean. Let x
be fixed, we give a rate of convergence of q̂α (x) to qα (x) under some general
conditions.

Theorem 1. Under the hypotheses H1–H5, (4), then, for all p ≥ 1,
we have

‖q̂α(x)− qα(x)‖p = (E|q̂α(x)− qα(x)|p)1/p =

= O
(
(an)b1 + (bn)b2

)
+O

((
1

n̂φx(an)

) 1
2

)
.

Let

Ki = K1

(
d(x,Xi)
an

)
, Hi(y) = K2

(
y − Yi

bn

)
, Wni = Wni(x) =

Ki∑
i∈In Ki

,

F̂ x
N (y) =

1
n̂EK1

∑
i∈In

KiHi(y), F̂ x
D =

1
n̂EK1

∑
i∈In

Ki.

By hypothesis H4, F̂ x
N (y) is of class C1; then, we can write the following Taylor

development

F̂ x
N (q̂α(x)) = F̂ x

N (qα(x)) + F̂ x(1)

N (q∗α(x)) (q̂α(x)− qα(x)) ,

where q∗α(x) is in the interval of extremities qα(x) and q̂α(x). Thus,

q̂α(x)− qα(x) =
1

F̂ x(1)

N

(
q∗α(x)

) (F̂ x
N

(
q̂α(x)

)
− F̂ x

N

(
qα(x)

))
=

1

F̂ x(1)

N

(
q∗α(x)

) (αF̂ x
D − F̂ x

N

(
qα(x)

))
.

It is shown in Laksaci and Maref (2009) that under (H1)–(H5), (2) and (6) that

q̂α(x)− qα(x) → 0, almost completely (a.co).

So, by combining this consistency and the result of Lemma 11.17 in
Ferraty and Vieu ([13], p. 181), together with the fact that q∗α(x) is lying
between q̂α(x) and qα(x), it follows that

(7) F̂ x(1)

N (q∗α(x))− fx(qα(x)) → 0. a.co.
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Since fx(qα(x)) > 0, we can write

∃C > 0 such that

∣∣∣∣∣ 1

F̂ x(1)

N (q∗α(x))

∣∣∣∣∣ ≤ C a.s.

It follows that

‖q̂α(x)− qα(x)‖p ≤ C
∥∥αF̂ x

D − F̂ x
N (qα(x))

∥∥
p
+
(
P (F̂ x

D = 0)
)1/p

.

So, the rest of the proof is deduce from the following three lemmas.

Lemma 1. Under H2 −H4, we have

E
[
αF̂ x

D − F̂ x
N (qα(x))

]
= O

(
ab1
n + bb2n

)
.

Lemma 2. Under the hypotheses of Theorem 1, we have∥∥∥αF̂ x
D − F̂ x

N (qα(x))− E
[
αF̂ x

D − F̂ x
N (qα(x))

]∥∥∥
p

= o

((
1

n̂φx(an)

) 1
2

)
.

Lemma 3. Under the hypotheses of Lemma 2, we have(
P
(
F̂ x

D = 0
))1/p

= o

((
1

n̂φx(an)

) 1
2

)
.

4.2. Asymptotic normality

This section contains results on the asymptotic normality of the quan-
tile estimator. For that we replace, respectively H2 and H4 by the following
hypotheses.

H ′
2: F

x satisfies H2 and ∀z ∈ Nx, F z is of class C1 with respect to y,
the conditional density fx is such that fx(qα) > 0 and ∀(x1, x2) ∈ Nx × Nx,
∀(y1, y2) ∈ R2

|fx1(y1)− fx2(y2)| ≤
(
‖x1 − x2‖d1 + |y1 − y2|d2

)
, d1, d2 > 0.

H ′
4: K2 satisfies H4 and∫

|t|d2K
(1)
2 (t)dt <∞.

Theorem 2. Under the hypotheses of Theorem 1 and H ′
2, H

′
4, (4) then,

for any x ∈ A, we have(
(fx(qα(x)))2n̂(ψK1(an))2

ψK2
1
(an)(α(1− α))

)(1/2)

(q̂α(x)− qα(x)− Cn(x)) →n→+∞ N(0, 1),
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where

Cn(x) =

=
1

fx(qα(x))ψK1(an)
(
αψK1(an)− E

[
K1

(
(an)−1d(x,X)

)
FX(qα(x))

])
+O(bn)

and

A =

{
x ∈ F ,

ψK2
1
(an)

(ψK1(an))2
6= 0

}
with ψg(h) = −

∫ 1

0
g′(t)φx(ht)dt.

Firstly, observe that if H5 is satisfied then, we have

(8) ∃ 0 < θ1 < 1, such that n̂(−1+θ1)/(1+2N) ≤ φx(an).

Let

∆i =
1√
EK2

1

[αKi −KiHi(qα)− E (αKi −KiHi(qα))] .

By hypothesis H ′
4, F̂

x
N (y) is of class C1, then, we can write the following Taylor

development:

F̂ x
N (q̂α) = F̂ x

N (qα) + F̂ x(1)

N (q∗α) (q̂α − qα)

where q∗α is in the interval of extremities qα and q̂α. Thus,

q̂α − qα =
1

F̂ x(1)

N (q∗α)

(
F̂ x

N (q̂α)− F̂ x
N (qα)

)
=

1

F̂ x(1)

N (q∗α)

(
αF̂ x

D − F̂ x
N (qα)

)
,

[
fx(qα)2n̂E2Ki

α(1− α)EK2
i

]1/2 (
[q̂α − qα − Cn(x)]

)
=

=
[

n̂E2Ki

α(1− α)EK2
i

]1/2
(

fx(qα)

F̂ x(1)

N (q∗α)

(
αF̂ x

D − F̂ x
N (qα)

)
− E

(
αF̂ x

D − F̂ x
N (qα)

))
,

where

Cn(x) =
1

fx(qα)
E
(
αF̂ x

D − F̂ x
N (qα)

)
.

Consequently, the proof of the theorem is the consequence of the following
lemmas and the convergence result (7).

Lemma 4. Under the hypotheses of Theorem 2, we have
i) V ar (∆i) → α(1− α);
ii)

∑
i,j∈In

Cov (∆i,∆j) = o (n̂) and

iii) 1
n̂var

(∑
i∈In ∆i

)
→ α(1− α), when n →∞.
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Lemma 5. Under the hypotheses of Theorem 2 we have[
n̂E2Ki

α(1− α)EK2
i

]1/2 ([
αF̂ x

D − F̂ x
N (qα)

]
− E

[
αF̂ x

D − F̂ x
N (qα)

])
→ N(0, 1).

Lemma 6. Under the hypotheses H ′
2 and H ′

4, we have

E
[
αF̂ x

D − F̂ x
N (qα)

]
= α− 1

EKi
E

[
K

(
d, x−X

an

)
FX(qα)

]
+O

(
bb2n

)
and

E
[
αF̂ x

D − F̂ x
N (qα)

]
= O

(
ab1
n + bb2n

)
.

It is easy to see that, if one imposes some additional assumptions on the
function φx(·) and the bandwidth parameters (an and bn) we can improved our
asymptotic normality by explicit asymptotic expressions of dispersion terms
or by removing the bias term Cn(x).

Corollary 1. Under the hypotheses of Theorem 2 and if the bandwidth
parameters (an and bn) and if the function φx(an) satisfies

lim
n→∞

(anb1 + bn
b2)
√

n̂φx(an) = 0 and lim
n→∞

φx(tan)
φx(an)

= β(t), ∀t ∈ [0, 1],

we have(
(fx(tα(x)))2δ21
δ2(α(1− α))

)(1/2)√
nφx(an)

(
t̂α(x)− tα(x)

)
→n→+∞ N(0, 1),

where δj = −
∫ 1
0 (Kj)′(s)β(s)ds, for, j = 1, 2.

Remark 2. If we assume that (5) is satisfied instead of (4) then it is
simple to have the results of Theorems 1 and 2, the only thing that changes is
condition (H5) which will be replaced by some assumption that depend on β̃.

5. APPENDIX

We first state the following lemmas which are due to Carbon et al. [6].
They are needed for the convergence of our estimates. Their proofs will then
be omitted.

Lemma 7. Suppose E1, . . . , Er be sets containing m sites each with
dist(Ei, Ej) ≥ γ for all i 6= j, where 1 ≤ i ≤ r and 1 ≤ j ≤ r. Sup-
pose Z1, . . . , Zr is a sequence of real-valued r.v.’s measurable with respect to
B(E1), . . . ,B(Er) respectively, and Zi takes values in [a, b]. Then, there ex-
ists a sequence of independent r.v.’s Z∗

1 , . . . , Z
∗
r independent of Z1, . . . , Zr such
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that Z∗
i has the same distribution as Zi and satisfies

r∑
i=1

E|Zi − Z∗
i | ≤ 2r(b− a)ψ((r − 1)m,m)ϕ(γ).

Lemma 8. (i) Suppose that (3) holds. Denote by Lr(F) the class of
F-measurable r.v.’s X satisfying ‖X‖r = (E|X|r)1/r < ∞. Suppose X ∈
Lr(B(E)) and Y ∈ Ls(B(E′)). Assume also that 1 ≤ r, s, t < ∞ and
r−1 + s−1 + t−1 = 1. Then,

|EXY − EXEY | ≤(9)

≤ C‖X‖r‖Y ‖s{ψ(Card(E), Card(E′))ϕ(dist(E,E′))}1/t.

(ii) For r.v.’s bounded with probability 1, the right-hand side of (9) can
be replaced by Cψ(Card(E), Card(E′))ϕ(dist(E,E′)).

Proof of Lemma 1. We have

E[αF̂ x
D − F̂ x

N (qα(x))] = α− 1
EK1

(E [K1E [H1(qα(x)) | X1]]) .

We shall use the integration by parts and the usual change of variables t = y−z
bn

,
to show that

E[αF̂ x
D − F̂ x

N (qα(x))] = α− 1
EK1

(
EK1

∫
K

(1)
2 (t)FX1((qα(x))− bnt)dt

)
.

Hypotheses (H2) and (H4) allow to get

E[αF̂ x
D − F̂ x

N (qα(x))] ≤
1

EK1
E

[
K1

∫
K

(1)
2 (t)

∣∣F x((qα(x))− FX1((qα(x))− bnt)dt
∣∣] ≤ C

(
ab1
n + bb2n

)
.

Proof of Lemma 2. We have∥∥∥αF̂ x
D − F̂ x

N (qα(x))− E
[
αF̂ x

D − F̂ x
N (qα(x))

]∥∥∥
p

=
1

nEK1

∥∥∥∥∑
i∈In

θi

∥∥∥∥
p

,

where
θi = Ki(α−Hi(qα(x)))− E [Ki(α−Hi(qα(x)))] .

We have EK1 = O(φx(hK)), (because of H3), so it remains to show that∥∥∥∥∑
i∈In

θi

∥∥∥∥
p

= O(
√

n̂φx(an)).

The evaluation of this quantity is based on ideas similar to that used by Gao
et al. (2008), see also Abdi et al. (2010). More preciously, we prove the case



11 Spatial conditional quantile regression 321

where p = 2m (for all m ∈ N∗) and we use the Hölder inequality for lower
values of p.

First of all, let us notice that the notations θi and ξi, deliberately intro-
duced above, are the same as those used in Lemma 2.2 of Gao et al. (2008) or
Abdi et al. (2010a). The proof of the lemma is completely modeled on that
of Lemma 2.2 of Gao et al.. To make easier the understanding of the effect
of the boundedness of θi on the results, we opt to run along the lines of Gao
et al.’s proof (keeping the same notations) and give the moment results in a
simpler form. To start, note that

E

[(∑
i∈In

θi

)2r
]

=
∑
i∈In

E
[
θ2m
i

]
+

2m−1∑
s=1

∑
ν0+ν1+···+νs=2r

Vs(ν0, ν1, . . . , νs),

where
∑

ν0+ν1+···+νs=2m
is the summation over (ν0, ν1, . . . , νs) with positive in-

teger components satisfying ν0 + ν1 + · · ·+ νs = 2m and

Vs(ν0, ν1, . . . , νs) =
∑

i0 6=i1 6=···6=is

E
[
θν0
i0
θν1
i1
. . . θνs

is

]
,

where the summation
∑

i0 6=i1 6=···6=is

is over indexes (i0, i1, . . . , is) with each index

ij taking value in In and satisfying ij 6= il for any j 6= l, 0 ≤ j, l ≤ s. By
stationarity and the fact that K2 is a distribution function, we have∑

i∈In

E (θi)
2m ≤ Cn̂E (|θi|)2m ≤ n̂E (Ki)

2m ≤ Cn̂φx(an).

To control the term Vs(ν0, ν1, . . . , νs), we need to prove, for any positive inte-
gers ν0, ν1, ν2, . . . νs, the following results:

i) E
∣∣θν1

i1
θν2
i2
. . . θνs

is

∣∣ ≤ Cφx(an)1+vs ;

ii) Vs(ν0, ν1, . . . , νs)=O
((

n̂φx(an)
)s+1), for s=1, 2, . . . ,m−1 and m > 1;

iii) Vs(ν0, ν1, . . . , νs) = O
(
(n̂φx(an))m ), for m ≤ s ≤ 2m− 1.

To show the result i), remark that the boundness of K2 and (2) yield

E
∣∣θν1

i1
θν2
i2
. . . θνs

is

∣∣ ≤ Cφ1+vs
x (an).

Proof of ii). Note that we can write

Vs(ν0, ν1, . . . , νs) =

=
∑

i0 6=i1 6=···6=is

[
E

( s∏
j=0

θ
νj

ij

)
−

s∏
j=0

Eθ
νj

ij

]
+

∑
i0 6=i1 6=···6=is

s∏
j=0

Eθ
νj

ij
=: Vs1 + Vs2.

Clearly, we have |Vs2| ≤ C
∑

i0 6=i1 6=···6=is

(φx(an))s+1 ≤ C (n̂φx(an))s+1.
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For the term Vs1, notice that

E

( s∏
j=0

θ
νj

ij

)
−

s∏
j=0

Eθ
νj

ij
=

=
s−1∑
l=0

( l−1∏
j=0

Eθ
νj

ij

)(
E

[ s∏
j=l

θ
νj

ij

]
− E

[
θνl
il

]
E

[ s∏
j=l+1

θ
νj

ij

])
,

where we define
∏s

j=l = 1 if l > s. Then, we obtain

|Vs1| ≤
s−1∑
l=0

(n̂φx(an))l
∑

il 6=···6=is

∣∣∣∣E[ s∏
j=l

ξ
νj

ij

]
− E

[
ξνl
il

]
E

[ s∏
j=l+1

ξ
νj

ij

]∣∣∣∣ =
=

s−1∑
l=0

(n̂φx(an))l Vls1.

Let P be some positive real, we have

Vls1 =
∑

0<dist({il},{il+1,...,is})≤P

∣∣∣∣E[ s∏
j=l

θ
νj

ij

]
− E

[
θνl
il

]
E

[ s∏
j=l+1

θ
νj

ij

]∣∣∣∣+
+

∑
0<dist({il},{il+1,...,is})>P

∣∣∣∣E[ s∏
j=l

θ
νj

ij

]
− E

[
θνl
il

]
E

[ s∏
j=l+1

θ
νj

ij

]∣∣∣∣ := Vls11 + Vls12.

Using the result i) above leads to∣∣∣∣E[ s∏
j=l

θ
νj

ij

]
− E

[
θνl
il

]
E

[ s∏
j=l+1

θ
νj

ij

]∣∣∣∣ ≤ ∣∣∣∣E[ s∏
j=l

θ
νj

ij

]∣∣∣∣+ ∣∣∣∣E[θνl
il

]
E

[ s∏
j=l+1

θ
νj

ij

]∣∣∣∣ ≤
≤ Cφx(an)1+vs+1−l .

Thus, we have

Vls11 ≤
∑

0<dist({il},{il+1,...,is})≤P

Cφx(an)1+vs+1−l ≤

≤ Cφx(an)1+vs+1−l

P∑
k=1

∑
k≤dist({il},{il+1,...,is})=t<k+1

1.
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Since dist({il}, {il+1, . . . , is}) = t, it follows that there exits some ij ∈
{il+1, . . . , is}, say il+1, such that dist({il}, {il+1}) = t, and therefore,

P∑
k=1

∑
k≤dist({il},{il+1,...,is})=t<k+1

1 ≤
P∑

k=1

∑
ij∈In

j=l+2,...,s

∑
k≤dist({il},{il+1)=t<k+1

1 ≤

≤ n̂(s−1−l)
P∑

k=1

∑
k≤dist({il},{il+1)=t<k+1

1.

Thus,

Vls11 ≤ Cφx(an)1+vs+1−ln̂(s−l)
P∑

k=1

∑
k≤‖i‖=t<k+1

1 ≤

≤ Cφx(an)1+vs+1−ln̂(s−l)
P∑

t=1

tN−1 ≤ Cφx(an)1+vs+1−ln̂(s−l)PN .

For the term Vls12, notice that since the variables θi are bounded, we have (see
Lemma 8) ∣∣∣∣E[ s∏

j=l

θ
νj

ij

]
− E

[
θνl
il

]
E

[ s∏
j=l+1

θ
νj

ij

]∣∣∣∣ ≤ Cψ(1, s− l)ϕ(t),

where t = dist ({il}, {il+1, . . . , is}). Then, under (4) or (5), we have

Vls12 ≤ C
∞∑

k=P+1

∑
k≤dist({il},{il+1)=t<k+1

ϕ(t) ≤

≤ C

∞∑
k=P+1

n̂(s−l)
∑

k≤‖i‖=t<k+1

ϕ(t) ≤ Cn̂(s−l)
∞∑

t=P+1

tN−1ϕ(t).

Combining the upper bounds of Vls11 and Vls12, we have

|Vs1| ≤ C
s−1∑
l=0

(n̂φx(an))l

[
φx(an)1+vs+1−ln̂(s−l)PN + n̂(s−l)

∞∑
t=P+1

tN−1ϕ(t)

]
≤

≤ C (n̂φx(an))(s+1)
s−1∑
l=0

(n̂φx(an))l−s−1

[
φx(an)1+vs+1−ln̂(s−l)PN+

+ n̂(s−l)
∞∑

t=P+1

tN−1ϕ(t)
]

=
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= C (n̂φx(an))(s+1)
s−1∑
l=0

[
n̂−1PNφx(an)1+vs+1−lφx(an)l−s−1+

+ n̂−1φx(an)(l−s−1)
∞∑

t=P+1

tN−1ϕ(t)
]
≤

≤ C (n̂φx(an))(s+1)
s−1∑
l=0

[
n̂−1PNφx(an)1+vs+1−lφx(an)l−s−1+

+ n̂−1φx(an)(l−s−1)P−sN
∞∑

t=P+1

tsN+N−1ϕ(t)
]
.

Taking P = φx(an)−1/N , we obtain

|Vs1| ≤ C (n̂φx(an))(s+1)
s−1∑
l=0

[
1

n̂φx(an)
φx(an)1+vs+1−lφx(an)l−s−1+

+
1

n̂φx(an)
(φx(an)l)

∞∑
t=P+1

tsN+N−1−δ

]
≤ C (n̂φx(an))(s+1)

since δ > N(p+ 2).

Proof of iii). As indicated in Gao et al. (2008), since the arguments are
similar for any m ≤ s ≤ 2m − 1, the proof is given only for s = 2m − 1 and
N = 2 for simplicity. In this case, V2m−1(ν0, ν1, . . . , ν2m−1) is denoted W . To
simplify the notations, we write i = (i, j) ∈ Z2 and ik = (ik, jk) ∈ Z2. The
main difficulty is to cope with the summation∑

i0 6=i1 6=...i2m−1

E
[
θi0θi1 . . . θi2m−1

]
=

=
∑

(i0,j0) 6=(i1,j1) 6=···6=(i2m−1,j2m−1)

E
[
θi0j0θi1j1 . . . θi2m−1j2m−1

]
.

To this end, a novel ordering in Z2 (see Gao et al. (2008)), makes possible
to separate the indexes into two (or more) sets whose distance is greater or
smaller than P (usually larger than 1) is considered. Arrange each of the
index sets {i0, i1, . . . , i2m−1} and {j0, j1, . . . , j2m−1} in ascending orders as
(retaining the same notation for the first ordered index set for simplicity)
i0 ≤ i1 ≤ · · · ≤ i2m−1 and jl0 ≤ jl1 ≤ · · · ≤ jl2m−1 , where lk is to indicate that
lk may not be equal to k. The number of such arrangements is at most (2m)!.
Let ∆ik = ik− ik−1 and ∆jk = jlk − jlk−1 and arrange {∆i1, . . . ,∆i2m−1} and
{∆j1, . . . ,∆j2m−1} in decreasing orders, respectively as ∆ia1 ≥ · · · ≥ ∆ia2m−1

and ∆jb1 ≥ · · · ≥ ∆jb2m−1 . Let t1 = ∆iam , t2 = ∆jbm and t = max{t1, t2}. If
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t1 ≥ t2 then t = t1, and 0 ≤ iak
− iak−1

≤ t1 ≤ n1 for k = m+ 1, . . . , 2m− 1,
0 ≤ jlbk

− jlbk−1
≤ t ≤ n2 for k = m,m+ 1, . . . , 2m− 1. Therefore,

(10) iak−1
≤ iak

≤ iak−1
+t, jlbk−1

≤ jbk
≤ jlbk−1

+t for k = m+1, . . . , 2m−1.

We arrange i0 6= i1 6= · · · 6= i2m−1 according to the order of i0 ≤ i1 ≤ · · · ≤
i2m−1. If t1 < t2, arrange according to the order of jl0 ≤ jl1 ≤ · · · ≤ jl2m−1 and
the proof is similar.

Let I = {i1, . . . , i2m−1}, Ia = {ia1 , . . . , iam}, Ic
a = I − Ia =

{iam+1 , . . . , ia2m−1}, J = {jl1 , . . . , jl2m−1}, Jb = {jlb1 , . . . , jlbm
} and J c

b = J −
Jb = {jlbm+1

, . . . , jlb2m−1
}. Remark that (ia1 , . . . , ia2m−1) and (jlb1 , . . . , jlb2m−1

)
are permutations of respectively I and J . Then, from (10), t = iam − iam−1

and t ≥ jlbm
− jlbm−1

, we deduce that

W =
∑

i0 6=i1 6=...i2m−1

E
[
θi0θi1 . . . θi2m−1

]
≤ C

∑
1≤i0≤i1≤···≤i2m−1≤n1

∑
1≤jl0

≤jl1
≤···≤jl2m−1

≤n2

∣∣E [θi0j0θi1j1 . . . θi2m−1j2m−1

]∣∣
≤ C

max(n1,n2)∑
t=1

n1∑
i0=1

n1∑
i=1

i∈Ia−{iam}

iak−1+t∑
iak

=iak−1
k=m+1,...,2m−1

n2∑
jl0

=1

n2∑
j=1

j∈Jb−{jlbm
}

jlbk−1
+t∑

jlbk
=jlbk−1

k=m,m+1,...,2m−1

·

·
∣∣E [θi0θi1 . . . θi2m−1

]∣∣ .
Take a positive constant P such that 1 ≤ P ≤ max(n1, n2) and divide the
right hand side of the previous inequality into two parts denoted by W1 and
W2 according to 1 ≤ t ≤ P and t > P . Then, W ≤ W1 +W2. In one hand,
use the result i) with s = 2m, and get

W1 = C
P∑

t=1

n1∑
i0=1

n1∑
i=1

i∈Ia−{iam}

iak−1
+t∑

iak
=iak−1

k=m+1,...,2m−1

n2∑
jl0

=1

n2∑
j=1

j∈Jb−{jlbm
}

jlbk−1
+t∑

jlbk
=jlbk−1

k=m,m+1,...,2m−1

·

·
∣∣E [θi0θi1 . . . θi2m−1

]∣∣
≤ C

P∑
t=1

n1∑
i0=1

n1∑
i=1

i∈Ia−{iam}

iak−1
+t∑

iak
=iak−1

k=m+1,...,2m−1

n2∑
jl0

=1

n2∑
j=1

j∈Jb−{jlbm
}

jlbk−1
+t∑

jlbk
=jlbk−1

k=m,m+1,...,2m−1

φx(an)1+v2m

≤ C(n1n2)m
P∑

t=1

t2m−1φx(an)1+v2m ≤ C(n1n2)mP 2mφx(an)1+v2m .
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In another hand, assume that neither i1 nor i2m−1 belongs to Ia (if i1 or
i2m−1 is in Ia the proof is similar). In this case, Ia is a subset of size m
chosen from the 2m − 3 remaining indexes (besides i0, i1 and i2m−1). As
raised by Gao et al., this is due to the fact that there must be two succes-
sive indexes because there are not enough elements in the set of remaining
indices to allow a gap between every two elements of Ia. The first com-
ponents of ij ’s are ordered as i0 ≤ i1 ≤ · · · ≤ ik∗−1 ≤ ik∗ ≤ ik∗+1 ≤
· · · ≤ i2m−1 for some k∗ ≥ 1 and ∆ij = ij − ij−1. Then, we have, ei-
ther dist({i0, . . . , ik∗−1}, {ik∗}) ≥ ∆ik∗ ≥ t, dist({ik∗}, {ik∗+1, . . . , i2m−1}) ≥
∆ik∗+1 ≥ t and dist({i0, . . . , ik∗−1}, {ik∗ , . . . , i2m−1}) ≥ ∆ik∗+1 ≥ t, or
dist({i0}, {i1, . . . , i2m−1}) ≥ ∆i1 ≥ t or dist({i0, . . . , i2m−2}, {i2m−1}) ≥
∆i2m−1 ≥ t. Let Aik∗−1

= θi0θi1 . . . θik∗−1
and Bik∗+1

= θik∗+1
. . . θi2m−1 , then,

for the case of ik∗ and ik∗+1 in Ia, we have

|E[θi0θi1 . . . θi2m−1 ]| = |E[Aik∗−1
θik∗Bik∗+1

]|
≤ |E[(Aik∗−1

− EAik∗−1
)(θik∗Bik∗+1

− Eθik∗Bik∗+1
)]|

+ |E[Aik∗−1
]E[(θik∗Bik∗+1

)]|
= |Cov(Aik∗−1

, θik∗Bik∗+1
)|+ |E[Aik∗−1

]| |Cov(θik∗ , Bik∗+1
)|

≤ Cϕ(t) + Cφx(an)1+vk∗ϕ(t) ≤ Cϕ(t).

Thus,

W2 = C

max(n1,n2)∑
t=P+1

n1∑
i0=1

n1∑
i=1

i∈Ia−{iam}

iak−1
+t∑

iak
=iak−1

k=m+1,...,2m−1

n2∑
jl0

=1

n2∑
j=1

j∈Jb−{jlbm
}

jlbk−1
+t∑

jlbk
=jlbk−1

k=m,m+1,...,2m−1∣∣E [θi0θi1 . . . θi2m−1

]∣∣ ≤ C(n1n2)m
∞∑

t=P+1

t2m−1ϕ(t).

It follows that

W ≤W1 +W2 ≤ C(n1n2)mP 2mφx(an)1+v2m + C(n1n2)m
∞∑

t=P+1

t2m−1ϕ(t)

≤ (n1n2)
m
(
P 2mφx(an)(1+v2m) + P 2m−1−δ

)
.

For general N , we obtain by similar arguments

W ≤ C(n̂)m
(
PNmφx(an)(1+vNm) + PNm−1−δ

)
.
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Taking P = φx(an)−(1+vNm)/1+δ), we get

W ≤ C(n̂φx(an))m

(̂
n−1φx(an)−Nm−1+(1+vNm)+(n̂φx(an))−1

∞∑
t=P+1

tNm−1−δ

)
≤ C(n̂φx(an))m

because δ > N(p+ 2). This ends the proof of the lemma.

Proof of Lemma 3. We have for all ε < 1,

P
(
F̂ x

D = 0
)
≤ P

(
F̂ x

D ≤ 1− ε
)
≤ P

(
|F̂ x

D − E[F̂ x
D]| ≥ ε

)
.

Markov’s inequality allows to get, for any p > 0,

P
(
|F̂ x

D − E[F̂ x
D]| ≥ ε

)
≤
E
[
|F̂ x

D − E[F̂ x
D]|p

]
εp

.

So, (
P
(
F̂ x

D = 0
))1/p

= O
(∥∥F̂ x

D − E[F̂ x
D]
∥∥

p

)
.

The computation of
∥∥F̂ x

D −E[F̂ x
D]
∥∥

p
can be done by following the same argu-

ments as those used to prove Lemma 2. This yields the proof.

Proof of Lemma 4. Let us calculate the variance V ar(∆i). We have

V ar(∆i) =
1

EK2
i

[
EK2

i (α−Hi(qα))2 − (EKi (α−Hi(qα)))2
]

=
1

EK2
i

EK2
i (α−Hi(qα))2 − (EKi)

2

EK2
i

[
E
Ki (Hi(qα)−α)

EKi

]2

= A1−A2.

Let us first consider A2. We deduce from the hypothesis H3 that there
exist two positive constants C and C ′ such that Cφx(an) ≤ EKr

i ≤ C ′φx(an),

r > 1, thus, (EKi)
2

EK2
i

= o(1). If we take the conditional expectation with respect
to X, we get∣∣∣∣E[Ki(Hi(qα)−α)

EKi

]∣∣∣∣= ∣∣∣∣E Ki

EKi
[E(Hi(qα)|X)−α]

∣∣∣∣≤E Ki

EKi
|E(Hi(qα)|Xi)−α|.

It is easy to see that by hypothesis H ′
4 (ii)

|E (Hi(qα)|X)− α| = |E (Hi(qα)|X)− F x(qα)|

≤ C

(
ab1
n + bb2n

∫
R
|t|b2

∣∣K(1)
2 (t)

∣∣dt) ,
∣∣∣∣EKi (Hi(qα)− α)

EKi

∣∣∣∣ = O
(
ab1
n + bb2n

)
.
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Then, we deduce that A2 tends to 0. Concerning A1, we have

(α−Hi(qα))2 =
(
H2

i (qα)− α
)
− 2α (Hi(qα)− α) + α− α2.

Then, we can write

A1 =
1

EK2
i

[
EK2

i

(
H2

i (qα)− α
)
− 2αEK2

i (Hi(qα)− α)
]
+ α (1− α) .

The conditional expectation with respect to Xi, permits to obtain

A1 = E
K2

i

EK2
i

[
E
(
H2

i (qα)|Xi

)
− α

]
−2αE

K2
i

EK2
i

[E (Hi(qα)|Xi)− α]+α (1− α) .

The same argument as above, gives∣∣∣∣E K2
i

EK2
i

[E (Hi(qα)|Xi)− α]
∣∣∣∣ = O

(
ab1
n + bb2n

)
.

It remains to show that∣∣E (H2
i (qα)|Xi

)
− α

∣∣ = O
(
ab1
n + bb2n

)
.

By an integration by part and hypotheses H ′
2 and H ′

4, we have

∣∣E (H2
i (qα)|Xi

)
− α

∣∣ = ∣∣∣∣∫
R
K2

2

(
qα − z

bn

)
fXi(z)dz − F x(qα)

∣∣∣∣
=
∣∣∣∣∫

R
2K2(t)K

(1)
2 (t)

(
FXi(qα − bnt)− F x(qα)

)
dt
∣∣∣∣

≤ ab1
n

∫
R

2K2(t)K
(1)
2 (t)dt+ bb2n

∫
R

2K2(t)|t|b2K(1)
2 (t)dt

≤ Cab1
n + bb2n

∫
R

2|t|b2K(1)
2 (t)dt = O

(
ab1
n + bb2n

)
.

We deduce from above that A1 converges to α (1− α); then,

V ar (∆i) → α (1− α) .

Let us focus now on the covariance term. We consider

E1 = {i, j ∈ In : 0 < ‖i− j‖ ≤ cn},

E2 = {i, j ∈ In : ‖i− j‖ > cn}.
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We have

Cov (∆i,∆j) = E∆i∆j =

=
1

EK2
i

[
EKiKj (α−Hi(qα)) (α−Hj(qα))− (EKi (α−Hi(qα)))2

]
≤

≤ 1
EK2

i

[EKiKj (α−Hi(qα)) (α−Hj(qα))] +
1

EK2
i

[EKi (α−Hi(qα))]2 .

The conditional expectation with respect to Xi, gives

1
EK2

i

[EKi (α−Hi(qα))]2 =

=
1

EK2
i

|EKi (α− E(Hi(qα)|Xi))|2 ≤
1

EK2
i

[EKi |E (Hi(qα)|Xi)− α|]2 .

Recall that

|E (Hi(qα)|X)− α| = O
(
ab1
n + bb2n

)
; then, |E (Hi(qα)|X)− α| ≤ C.

So,
1

EK2
i

[EKi (α−Hi(qα))]2 ≤ Cφx(an).

Since K1 is bounded, we get

1
EK2

i

[EKiKj (α−Hi(qα)) (α−Hj(qα))] ≤ C
1

EK2
i

[EKiKj] ≤

≤ C
1

EK2
i

P [(Xi, Xj) ∈ B(x, an)×B(x, an)] .

Then, we deduce from (2)

1
EK2

i

[EKiKj (α−Hi(qα)) (α−Hj(qα))] ≤

≤ C
1

EK2
i

(φx(an))1+v2 ≤ (φx(an))v2 .

Then, we have since v2 > 1: Cov (∆i,∆j) ≤ C(φx(an) + (φx(an))v2) ≤
C(φx(an)) and

∑
E1

Cov (∆i,∆j) ≤ Cn̂cNn φx(an).

Lemma 8 and |∆i| ≤ Cφx(an)−1/2, permit to write that

|Cov (∆i,∆j)| ≤ Cφx(an)−1ϕ (‖i− j‖)



330 Sophie Dabo-Niang, Zoulikha Kaid and Ali Laksaci 20

and∑
E2

Cov (∆i,∆j) ≤ Cφx(an)−1
∑

(i,j)∈E2

ϕ (‖i− j‖) ≤ Cn̂φx(an)−1
∑

i:‖i‖>cn

ϕ (‖i‖)

≤ Cn̂φx(an)−1c−δ
n

∑
i:‖i‖>cn

‖i‖δϕ (‖i‖) .

Finally, for δ > 0 we have∑
Cov (∆i,∆j) ≤

(
Cn̂cNn φx(an) + Cn̂φx(an)−1c−δ

n

∑
i:‖i‖>cn

‖i‖δϕ (‖i‖)
)
.

Let cn = φx(an)−1/N , then, we have∑
Cov (∆i,∆j) ≤

(
Cn̂ + Cn̂φx(an)δ/N−1

∑
i:‖i‖>cn

‖i‖δϕ (‖i‖)
)
.

Hence, we obtain that ∑
Cov (∆i,∆j) = o (n̂) .

In conclusion, we have

1
n̂
var

(∑
i∈In

∆i

)
=
(
var (∆i)+

1
n̂

∑
i,j∈In

Cov (∆i,∆j)
)
→α(1−α) when n→∞.

This yields the proof.

Proof of Lemma 5. Let

Sn =
nk∑

jk=1
k=1,...,N

∆j

with

∆j =
1√
EKi

[αKi −KiHi(qα)− E (αKi −KiHi(qα))] .

Then, we can write[
n̂E2Ki

α(1− α)EK2
i

]1/2 ([
αF̂ x

D − F̂ x
N (qα)

]
− E

[
αF̂ x

D − F̂ x
N (qα)

])
=

= (n̂α(1− α))−1/2 Sn.

Consider the same spatial block decomposition (due to Tran (1990)) as
Lemma 2, with qn = o

([
n̂φx(an)(1+2N)

]1/(2N)
)
, mn =

[
(n̂φx(an))1/(2N)/sn

]
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where sn = o
([

n̂φx(an)1+2N
]1/(2N)

q−1
n

)
. Then, we have

Sn =
2N∑
i=1

T (n, x, i),

where
T (n, x, i) =

∑
j∈J

U(i,n, x, j).

Hence,

Sn/ (n̂α(1− α))1/2 = T (n, x, 1) / (n̂α(1− α))1/2 +

+
2N∑
i=2

T (n, x, i) / (n̂α(1− α))1/2 .

Thus, the proof of the asymptotic normality of (n̂α(1− α))−1/2 Sn is reduced
to the proofs of the following results

(11) Q1 ≡
∣∣∣∣E exp

[
iuT (n, x, 1)

]
−

rk−1∏
jk=0

k=1,...,N

E exp
[
iuU(1,n, x, j)

]∣∣∣∣→ 0

(12) Q2 ≡ n̂−1E

( 2N∑
i=2

T (n, x, i)
)2

→ 0

(13) Q3 ≡ n̂−1
∑
j∈J

E
[
U(1,n, x, j)

]2
→ α(1− α)

(14)
Q4 ≡ n̂−1

∑
j∈J

E
[
(U(1,n, x, j))21{|U(1,n,x,j)|>ε(α(1−α)n̂)1/2}

]
→ 0, for all ε > 0.

Proof of (11). Let us numerate theM =
N∏

k=1

rk = n̂(mn+qn)−N ≤ n̂m−N
n

random variables U(1,n, x, j); j ∈ J in the arbitrary way Ũ1, . . . , ŨM . For
j ∈ J , let

I(1,n, x, j) = {i : jk(mn + qn) + 1 ≤ ik ≤ jk(mn + qn) +mn; k = 1, . . . , N}

then, we have U(1,n, x, j) =
∑

i∈I(1,n,x,j)

∆i. Note that each of the sets

of site I(1,n, x, j) contains mN
n , these sets are distant of mn at least.
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Let us apply the lemma of Volkonski and Rozanov (1959) to the variable(
exp(iuŨ1), . . . , exp(iuŨM )

)
. The fact that

∣∣∣ M∏
s=j+1

exp[iuŨs]
∣∣∣ ≤ 1, implies

Q1 =
∣∣∣∣E exp

[
iuT (n, x, 1)

]
−

rk−1∏
jk=0

k=1,...,N

E exp
[
iuU(1,n, x, j)

]∣∣∣∣
=
∣∣∣∣E rk−1∏

jk=0
k=1,...,N

exp [iuU(1,n, x, j)]−
rk−1∏
jk=0

k=1,...,N

E exp
[
iuU(1,n, x, j)

]∣∣∣∣
≤

M−1∑
k=1

M∑
j=k+1

∣∣∣∣E( exp[iuŨk]− 1
)(

exp[iuŨj ]− 1
) M∏

s=j+1

exp[iuŨs]

− E
(
exp[iuŨk]− 1

)
E
(
exp[iuŨj ]− 1

) M∏
s=j+1

exp[iuŨs]
∣∣∣∣

=
M−1∑
k=1

M∑
j=k+1

∣∣∣E( exp[iuŨk]− 1
)(

exp[iuŨj ]− 1
)

− E
(
exp[iuŨk]− 1

)
E
(
exp[iuŨj ]− 1

)∣∣∣ ∣∣∣∣ M∏
s=j+1

exp[iuŨs]
∣∣∣∣

≤
M−1∑
k=1

M∑
j=k+1

∣∣∣E( exp[iuŨk]− 1
)(

exp[iuŨj ]− 1
)

− E
(
exp[iuŨk]− 1

)
E
(
exp[iuŨj ]− 1

)∣∣∣.

Let Ĩj be the set of sites among the I(1,n, x, j) such that Ũj =
∑

i∈Ĩ(j)
∆i.

The lemma of Carbon et al. (1997) and assumption (3), give

∣∣∣E( exp[iuŨk]− 1
)(

exp[iuŨj ]− 1
)
− E

(
exp[iuŨk]− 1

)
E
(
exp[iuŨj ]− 1

)∣∣∣
≤ Cϕ

(
d(Ĩj , Ĩk)

)
mN

n .
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Then,

Q1 ≤ CmN
n

M−1∑
k=1

M∑
j=k+1

ϕ
(
d(Ĩj , Ĩk)

)
≤ CmN

n M
M∑

k=2

ϕ
(
d(Ĩ1, Ĩk)

)
≤ CmN

n M

∞∑
i=1

∑
k:iqn≤d(Ĩ1,Ĩk)<(i+1)qn

ϕ
(
d(Ĩ1, Ĩk)

)

≤ CmN
n M

∞∑
i=1

iN−1ϕ(iqn) ≤ Cn̂q−Nδ
n

∞∑
i=1

iN−1−Nδ,

by (6). This last tends to zero by the fact that n̂q−Nδ
n → 0 (see (H5)).

Proof of (12). We have

Q2 ≡ n̂−1E

( 2N∑
i=2

T (n, x, i)
)2

=

= n̂−1

( 2N∑
i=2

E [T (n, x, i)]2 +
∑

i,j=2,...,2N

i6=j

E [T (n, x, i)] [T (n, x, j)]
)
.

By Cauchy-Schwartz inequality, we get ∀ 2 ≤ i ≤ 2N :

n̂−1E [T (n, x, i)] [T (n, x, j)] ≤
(
n̂−1E [T (n, x, i)]2

)1/2(
n̂−1E [T (n, x, j)]2

)1/2
.

Then, it suffices to prove that

n̂−1E [T (n, x, i)]2 → 0, ∀ 2 ≤ i ≤ 2N .

We will prove this for i = 2, the case where i 6= 2 is similar. We have

T (n, x, 2) =
∑
j∈J

U(2,n, x, j) =
M∑

j=1
Ûj , where we enumerate the U(2,n, x, j)

in the arbitrary way Û1, . . . , ÛM . Then,

E [T (n, x, 2)]2 =
M∑
i=1

V ar
(
Ûi

)
+

M∑
i=1

M∑
j=1
i6=j

Cov
(
Ûi, Ûj

)
= A1 +A2.
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The stationarity of the process (Xi, Yi)i∈ZN , implies that

V ar(Ûi) = V ar

( mn∑
ik=1

k=1,...,N−1

qn∑
iN=1

∆i

)2

= mN−1
n qn V ar (∆i) +

mn∑
ik=1

k=1,...,N−1

qn∑
iN=1

mn∑
jk=1

k=1,...,N−1
i 6=j

qn∑
jN=1

E∆i∆j.

We proved above that V ar (∆i) < C. By Lemma 8, we have

(15) |E∆i(x)∆j(x)| ≤ Cφx(an)−1ϕ (‖i− j‖) .

Then, we deduce that

V ar(Ûi) ≤ CmN−1
n qn

(
1 + φx(an)−1

mn∑
ik=1

k=1,...,N−1

qn∑
iN=1

(ϕ (‖i‖))
)

≤ CmN−1
n qnφx(an)−1

mn∑
ik=1

k=1,...,N−1

qn∑
iN=1

(ϕ(‖i‖) .

Consequently, we have

A1 ≤ CMmN−1
n qnφx(an)−1

∞∑
i=1

iN−1 (ϕ(i)) .

Let

I (2,n, x, j) =
{
i : jk(mn + qn) + 1 ≤ ik ≤ jk(mn + qn) +mn, 1 ≤ k ≤ N − 1;

+jN (mn + qn) +mn + 1 ≤ iN ≤ (JN + 1)(mn + qn)
}
.

The variable U (2,n, x, j) is the sum of the ∆i such that i is in I (2,n, x, j).
Since mn > qn, if i and i′ are respectively in the two different sets I (2,n, x, j)
and I (2,n, x, j′); then, ik 6= i′k, for a certain k such that 1 ≤ k ≤ N and
‖i− i′‖ > qn.

By using the definition of A2, the stationarity of the process and (15),
we have

A2 ≤

nk∑
jk=1

k=1,...,N

nk∑
ik=1

k=1,...,N
‖i−j‖>qn

E∆i∆j ≤ Cφx(an)−1n̂
nk∑

ik=1
k=1,...,N
‖i‖>qn

(ϕ(‖i‖))
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and

A2 ≤ Cφx(an)−1n̂
∞∑

i=qn

iN−1 (ϕ(i)) .

We deduce that

n̂−1E [T (n, x, 2)]2 ≤ CMmN−1
n qnn̂−1φx(an)−1

∞∑
i=1

iN−1−δ+

+Cφx(an)−1
∞∑

i=qn

iN−1−δ.

From (mn + qn)−NmN−1
n qn = (mn + qn)−NmN

n

(
qn
mn

)
≤ qn

mn
, we get

CMmN−1
n qnn̂−1φx(an)−1 = n̂(mn + qn)−NmN−1

n qnn̂−1φx(an)−1 ≤

≤
(
qn
mn

)
φx(an)−1 = qnsn (n̂φx(an))

−1
2N φx(an)−1 = qnsn

(
n̂φx(an)(1+2N)

)−1
2N
.

By the hypothesis on qnsn, this last term converges to → 0. Finally, we have

Cφx(an)−1
∞∑

i=qn

iN−1−δ ≤ Cφx(an)−1

∫ ∞

qn

tN−1−δdt = Cφx(an)−1qN−δ
n .

This last term converges to zero by (8) and ends the proof of (12).

Proof of (13). Let us use the following decomposition of small and big
blocks

S′n = T (n, x, 1) , S′′n =
2N∑
i=2

T (n, x, i) .

Then, we can write

n̂−1E
(
S′n
)2 = n̂−1ES2

n + n̂−1E
(
S′′n
)2 − 2n̂−1ESnS

′′
n.

Lemma 4(iii) and (12) imply, respectively, that n̂−1E (Sn)2 = n̂−1var (Sn) →
α(1 − α) and n̂−1E (S′′n)2 → 0. Then, to show that n̂−1E (S′n)2 → α(1 − α),
it suffices to remark that n̂−1ESnS

′′
n → 0 because, by Cauchy-Schwartz’s

inequality, we can write∣∣n̂−1ESnS
′′
n

∣∣ ≤ n̂−1E
∣∣SnS

′′
n

∣∣ ≤ (n̂−1ES2
n

)1/2(n̂−1ES′′n
2)1/2

.
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Recall that T (n, x, 1) =
∑
j∈J

U (1,n, x, j) , so

n̂−1E
(
S′n
)2 = n̂−1

rk−1∑
jk=0

k=1,...,N

E [U (1,n, x, j)]2 +

+n̂−1 ×

rk−1∑
jk=0

k=1,...,N

rk−1∑
ik=0

k=1,...,N
ik 6=jk for some k

cov[U(1,n, x, j), U(1,n, x, i)].

By similar arguments used above for A2, this last term is not greater than

Cφx(an)−1
rk−1∑
ik=1

k=1,...,N
‖i‖>qn

(ϕ(‖i‖)) ≤ Cφx(an)−1
∞∑

i=qn

iN−1(ϕ(i)) ≤ Cφx(an)−1qN−δ
n →0.

So, Q3 → α(1− α). This ends the proof.

Proof of (14). Since |∆i| ≤ Cφx(an)−1/2, we have |U (1,n, x, j)| ≤
CmN

n φx(an)−1/2. Then, we deduce that

Q4 ≤ Cm2N
n φx(an)−1n̂−1

rk−1∑
jk=0

k=1,...,N

P
[
|U (1,n, x, j)| > ε (α(1− α)n̂)1/2

]
.

We have |U(1,n, x, j)|/((α(1− α)n̂)1/2) ≤ CmN
n (n̂φx(an))−1/2 = C(sn)−N →

0, because mn = [(n̂φx(an))1/(2N)/sn] and sn →∞. So, for all ε and j ∈ J ; if
n̂ is great enough, then P [U(1,n, x, j) > ε(α(1− α)n̂)1/2] = 0. Then, Q4 = 0
for n̂ great enough. This yields the proof.

Proof of Lemma 6. By change of variables, using the stationarity of the
process, we have

E
[
αF̂ x

D − F̂ x
N (qα)

]
= α− 1

EKi
E [KiHi(qα)] = α− 1

EKi
EKiE [Hi(qα)|Xi]

= α− 1
EKi

E

(
Ki

∫
R
K2

(
qα − y

bn

)
fXi(y)dy

)
= α− 1

EKi
E

(
Ki

∫
R
bn

(−1)K
(1)
2

(
qα − y

bn

)
FXi(y)dy

)
= α− 1

EKi
E

(
Ki

∫
R
K

(1)
2 (t)FXi (qα − bnt) dt

)
= α+ β1 + β2,
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where

β1 =− 1
EKi

E

(
Ki

∫
R
K

(1)
2 (t)FXi(qα)dt

)
= − 1

EKi
E

(
K1

(
d(x,X)
an

)
FX(qα)

)
and

β2 =
1

EKi
E

(
Ki

∫
R
K

(1)
2 (t)

[
FXi(qα)− FXi (qα − bnt)

]
dt
)

≤ 1
EKi

E

(
Ki

∫
R
K

(1)
2 (t)

∣∣FXi(qα)− FXi (qα − bnt)
∣∣ dt)

≤ C
1

EKi
E

(
Ki(bn)b2

∫
R
|t|b2K(1)

2 (t)
)

dt ≤ C(bn)b2 .

This yields the proof of the first result of the lemma. The following result ends
the proof of the second result

β1 =
1

EKi
E

(
K1

(
d(x,X)
an

)[
F x(qα)− FX(qα)

])
−

− 1
EKi

E

(
K1

(
d(x,X)
an

)
F x(qα)

)
≤ 1
EKi

E

(
K1

(
d(x,X)
an

) ∣∣F x(qα)− FX(qα)
∣∣)− α

≤ C(an)b1 1
EKi

E

(
K1

(
d(x,X)
an

))
− α ≤ C(an)b1 − α.
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