
SOME VECTOR-VALUED SEQUENCE SPACES
DEFINED BY A MUSIELAK-ORLICZ FUNCTION

KULDIP RAJ and SUNIL K. SHARMA
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1. INTRODUCTION

An Orlicz function M is a function, which is continuous, non-decreasing
and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) →∞ as x →∞.

Lindenstrauss and Tzafriri [15] used the idea of Orlicz function to de-
fine the following sequence space. Let w be the space of all real or complex
sequences x = (xk), then

`M =
{

x ∈ w :
∞∑

k=1

M
( |xk|

ρ

)
< ∞

}
which is called an Orlicz sequence space. The space `M is a Banach space with
the norm

‖x‖ = inf
{

ρ > 0 :
∞∑

k=1

M
( |xk|

ρ

)
≤ 1
}

.

It is shown in [15] that every Orlicz sequence space `M contains a subspace iso-
morphic to `p (p ≥ 1). The ∆2-condition is equivalent to M(Lx) ≤ kLM(x),
for all values of x ≥ 0, and for L > 1. An Orlicz function M can always be
represented in the following integral form

M(x) =
∫ x

0
η(t)dt,

where η is known as the kernel of M , is right differentiable for t ≥ 0, η(0) = 0,
η(t) > 0, η is non-decreasing and η(t) →∞ as t →∞.
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A sequence M = (Mk) of Orlicz function is called a Musielak-Orlicz
function, see ([18], [26]). A sequence N = (Nk) defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, . . .

is called the complementary function of a Musielak-Orlicz function M. For
a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM
and its subspace hM are defined as follows

tM =
{
x ∈ w : IM(cx) < ∞, for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) < ∞, for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =
∞∑

k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

‖x‖ = inf
{

k > 0 : IM

(x

k

)
≤ 1
}

or equipped with the Orlicz norm

‖x‖0 = inf
{1

k

(
1 + IM(kx)

)
: k > 0

}
.

The Cesaro summable sequence spaces defined by an Orlicz function were
studied by Parashar and Choudhary [27], Bhardwaj and Singh [1], Mursaleen
et al. [23], Et et. al. [6] and many others.

Let q1 and q2 be seminorms on a vector space X. Then, q1 is said to be
stronger than q2 if whenever (xn) is a sequence such that q1(xn) → 0, then
q2(xn) → 0 also. If each is stronger than the others q1 and q2 are said to be
equivalent see [38].

Let l∞, c and c0 be the linear spaces of bounded, convergent and null
sequences x = (xk) with complex terms, respectively, normed by ‖x‖∞ =
supk |xk|, where k ∈ N, the set of positive integers. Throughout the paper,
w(X), c(X), c0(X) and l∞(X) will represent the spaces of all, convergent,
null and bounded X valued sequence spaces. For X = C, the field of complex
numbers, these represent the corresponding scalar valued sequence spaces.
The zero sequence is denoted by θ = (0, 0, . . . , 0), where θ is the zero element
of X.

The studies on vector valued sequence spaces are done by Rath and Sri-
vastava [28], Das and Choudhary [5], Leonard [14], Srivastava and Srivastava
[36], Tripathy and Sen [37], Et et. al. [6] and many others.

Let u = (uk) be a sequences of non-zero scalar. Then, for a sequence
space E, the multiplier sequence space E(u), associated with the multiplier
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sequence u is defined as

E(u) = {(xk) ∈ w : (ukxk) ∈ E}.
The studies on the multiplier sequence spaces are done by Çolak [4],

Srivastava and Srivastava [36] and many others.
The notion of difference sequence spaces was introduced by Kızmaz [12],

who studied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion
was further generalized by Et and Çolak [7] by introducing the spaces l∞(∆n),
c(∆n) and c0(∆n). Let m, n be non-negative integers, then, for Z = l∞, c
and c0, we have sequence spaces,

Z(∆m
n ) = {x = (xk) ∈ w : (∆m

n xk) ∈ Z},
where ∆m

n x = (∆m
n xk) = (∆m−1

n xk − ∆m−1
n xk+n) and ∆0

nxk = xk, for all
k ∈ N, which is equivalent to the following binomial representation

∆m
n xk =

m∑
v=0

(−1)v

(
m
v

)
xk+nv.

Taking m = n = 1, we get the spaces l∞(∆), c(∆) and c0(∆) introduced
and studied by Kızmaz [12].

A sequence of positive integers θ = (kr) is called lacunary if k0 = 0,
0 < kr < kr+1 and hr = kr − kr−1 →∞ as r →∞. The intervals determined
by θ will be denoted by Ir = (kr−1, kr) and qr = kr

kr−1
. The space of lacunary

strongly convergent sequences Nθ was defined by Freedman et al. [9] as

Nθ =
{

x ∈ w : lim
r→∞

1
hr

∑
k∈Ir

|xk − l| = 0, for some l

}
.

The space Nθ is a BK-space with norm

‖x‖θ = sup
r

(
h−1

r

∑
k∈Ir

|(xk)|
)

.

Freedman et al. [9] also gave some relation between Nθ and the space
|σ1| of strongly Cesaro summable sequences, which is defined by

|σ1| =
{

x = (xk) : lim
n→∞

n∑
k=1

|xk − l| = 0, for some l

}
.

Strongly almost convergent sequence was introduced and studied by
Maddox [16] and Freedman [9]. Parashar and Choudhary [27] have intro-
duced and examined some properties of four sequence spaces defined by us-
ing an Orlicz function M , which generalized the well-known Orlicz sequence
spaces [C, 1, p], [C, 1, p]0 and [C, 1, p]∞. It may be noted here that the space of
strongly summable sequences were discussed by Maddox [17]. Subsequently,
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difference sequence spaces have been discussed by several authors see ([2], [20],
[21], [22], [23], [29], [30], [31], [32]) and references therein.

Let X be a linear metric space. A function p : X → R is called para-
norm, if

(1) p(x) ≥ 0, for all x ∈ X;
(2) p(−x) = p(x), for all x ∈ X;
(3) p(x + y) ≤ p(x) + p(y), for all x, y ∈ X;
(4) if (σn) is a sequence of scalars with σn → σ as n → ∞ and (xn) is

a sequence of vectors with p(xn − x) → 0 as n → ∞, then, p(σnxn − σx) →
0 as n →∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known that
the metric of any linear metric space is given by some total paranorm (see
[38], Theorem 10.4.2, p. 183).

Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded
sequence of positive real numbers and u = (uk) be a sequence of positive
reals such that uk 6= 0 for all k, X be a seminormed space over the field C
of complex numbers with the seminorm qk, for each k ∈ N. We define the
following sequence spaces in the present paper:

(w0,M, θ,∆m
n , Q, u, p) =

=
{

x = (xk) ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ

))]pk

→ 0,

as r →∞, for some ρ > 0
}

,

(w,M, θ,∆m
n , Q, u, p) =

=
{

x=(xk)∈w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk − l

ρ

))]pk

→ 0,

as r →∞, for some ρ > 0 and l ∈ X
}

,

and

(w∞,M, θ,∆m
n , Q, u, p) =

=
{

x=(xk)∈w(X) : sup
r

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ

))]pk

<∞, for some ρ>0
}

.
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If we take M(x) = x, we get

(w0, θ,∆m
n , Q, u, p) =

{
x=(xk)∈w(X) : lim

r→∞

1
hr

∑
k∈Ir

(
qk

(uk∆m
n xk

ρ

))pk

→ 0,

as r →∞, for some ρ>0
}

,

(w, θ, ∆m
n , Q, u, p)=

{
x=(xk)∈ w(X) : lim

r→∞

1
hr

∑
k∈Ir

(
qk

(uk∆m
n xk−l

ρ

))pk

→ 0,

as r →∞, for some ρ>0 and l ∈ X
}

,

and

(w∞, θ,∆m
n , Q, u, p) =

=
{

x = (xk) ∈ w(X) : sup
r

1
hr

∑
k∈Ir

(
qk

(uk∆m
n xk

ρ

))pk

< ∞, for some ρ > 0
}

.

If we take p = (pk) = 1, for all k ∈ N, we have

(w0,M, θ,∆m
n , Q, u)=

{
x=(xk)∈w(X) : lim

r→∞

1
hr

∑
k∈Ir

Mk

(
qk

(uk∆m
n xk

ρ

))
→ 0,

as r →∞, for some ρ > 0
}

,

(w,M, θ,∆m
n , Q, u)=

{
x=(xk)∈w(X) : lim

r→∞

1
hr

∑
k∈Ir

Mk

(
qk

(uk∆m
n xk−l

ρ

))
→0,

as r →∞, for some ρ > 0 and l ∈ X
}

,

and

(w∞,M, θ,∆m
n , Q, u) =

=
{

x = (xk) ∈ w(X) : sup
r

1
hr

∑
k∈Ir

Mk

(
qk

(uk∆m
n xk

ρ

))
< ∞, for some ρ > 0

}
.

If we take M(x) = x and u = e = (1, 1, 1, . . . , 1) then, these spaces reduces to

(w0, θ,∆m
n , Q, p) =

{
x = (xk) ∈ w(X) : lim

r→∞

1
hr

∑
k∈Ir

(
qk

(∆m
n xk

ρ

))pk

→ 0,

as r →∞, for some ρ > 0
}

,
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(w, θ, ∆m
n , Q, p) =

{
x = (xk) ∈ w(X) : lim

r→∞

1
hr

∑
k∈Ir

(
qk

(∆m
n xk − l

ρ

))pk

→ 0,

as r →∞, for some ρ > 0 and l ∈ X
}

,

and

(w∞, θ,∆m
n , Q, p) =

=
{

x = (xk) ∈ w(X) : sup
r

1
hr

∑
k∈Ir

(
qk

(∆m
n xk

ρ

))pk

< ∞, for some ρ > 0
}

.

The following inequality will be used throughout the paper. If 0 ≤ pk ≤
sup pk = H, K = max(1, 2H−1) then,

(1.1) |ak + bk|pk ≤ K{|ak|pk + |bk|pk}

for all k and ak, bk ∈ C. Also, |a|pk ≤ max(1, |a|H), for all a ∈ C.
The main motive of this paper is to study some topological properties

and prove some inclusion relations between above defined sequence spaces.

2. MAIN RESULTS

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be any sequence of
strictly positive real numbers then, the classes of sequences (w0,M, θ,∆m

n , Q,
u, p), (w,M, θ,∆m

n , Q, u, p) and (w∞,M, θ,∆m
n , Q, u, p) are linear spaces over

the field of complex number C.

Proof. Let x = (xk), y = (yk) ∈ (w0,M, θ,∆m
n , Q, u, p) and α, β ∈ C. In

order to prove the result we need to find some ρ3 such that

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n (αxk + βyk)

ρ3

))]pk

= 0.

Since x = (xk), y = (yk) ∈ (w0,M, θ,∆m
n , Q, u, p), there exist positive numbers

ρ1, ρ2 > 0 such that

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ1

))]pk

= 0

and

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n yk

ρ2

))]pk

= 0.



7 Some vector-valued sequence spaces 389

Define ρ3 = max(2|α|ρ1, 2|β|ρ2). Since Mk is non-decreasing convex func-
tion and so by using inequality (1), we have

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n (αxk + βyk)

ρ3

))]pk

≤ 1
hr

∑
k∈Ir

[
Mk

(
qk

(αuk∆m
n xk

ρ3
+

βuk∆m
n yk

ρ3

))]pk

≤K
1
hr

∑
k∈Ir

1
2pk

[
Mk

(
qk

(uk∆m
n xk

ρ1

))]pk

+ K
1
hr

∑
k∈Ir

1
2pk

[
Mk

(
qk

(uk∆m
n yk

ρ2

))]pk

≤ K
1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ1

))]pk

+ K
1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n yk

ρ2

))]pk

→ 0 as r →∞.

Thus, we have αx + βy ∈ (w0,M, θ,∆m
n , Q, u, p). Hence, (w0,M, θ,∆m

n ,
Q, u, p) is a linear space. Similarly, we can prove that (w,M, θ,∆m

n , Q, u, p)
and (w∞,M, θ,∆m

n , Q, u, p) are linear spaces. �

Theorem 2.2. Let M = (Mk) be a Musielak-Orlicz function, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence
of strictly positive real numbers. Then, (w0,M, θ,∆m

n , Q, u, p) is a topological
linear space paranormed by

g(x) =
m∑

i=1

q(xi) + inf
ρ>0, s≥1

{
ρ

ps
H : sup

k

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ

))]pk
) 1

H ≤1
}

,

where H = max(1, supk pk) < ∞.

Proof. (i) Clearly, g(x) ≥ 0, for x = (xk) ∈ (w0,M, θ,∆m
n , Q, u, p). Since

Mk(0) = 0, we get g(0) = 0.
(ii) g(−x) = g(x).
(iii) Let x = (xk), y = (yk) ∈ (w0,M, θ,∆m

n , Q, u, p) then, there exist
ρ1, ρ2 > 0 such that

sup
k

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ1

))]pk
)
≤ 1

and

sup
k

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n yk

ρ2

))]pk
)
≤ 1.
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Let ρ = ρ1 + ρ2, then by Minkowski’s inequality, we have

sup
k

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n (xk + yk)

ρ

))]pk
)

= sup
k

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n (xk + yk)
ρ1 + ρ2

))]pk
)

≤
( ρ1

ρ1 + ρ2

)
sup

k

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ1

))]pk
)

+
( ρ2

ρ1 + ρ2

)
sup

k

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n yk

ρ2

))]pk
)

and thus,

g(x + y) =
m∑

i=1

q(xi + yi)

+ inf
{

(ρ1 + ρ2)
ps
H : sup

n

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆n
mxk + uk∆n

myk

ρ

))]pk
) 1

H

≤ 1, ρ > 0
}

≤
m∑

i=1

q(xi) + inf
{

(ρ1)
ps
H : sup

n

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆n
mxk

ρ1

))]pk
) 1

H

≤ 1, ρ1 > 0
}

+
m∑

i=1

q(yi) + inf
{

(ρ2)
ps
H : sup

n

( 1
n

∑
k∈Ir

[
Mk

(
qk

(uk∆n
myk

ρ2

))]pk
) 1

H

≤ 1, ρ2 > 0
}
≤ g(x) + g(y).

(iv) Finally, we prove that scalar multiplication is continuous. Let λ be
any complex number by definition

g(λx) =
m∑

i=1

q(λxi)+

+ inf
{

(ρ)
ps
H : sup

n

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆n
mλxk

ρ

))]pk
) 1

H ≤ 1, ρ > 0
}
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= |λ|
m∑

i=1

q(xi)+

+ inf
{

(|λ|r)
ps
H : sup

n

( 1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆n
mxk

t

))]pk
) 1

H ≤ 1, ρ > 0
}

,

where t = ρ
|λ| . Hence, (w0,M, θ,∆m

n , Q, u, p) is a paranormed space. �

Theorem 2.3. Let M = (Mk) be a Musielak-Orlicz function. If
supk[Mk(x)]pk < ∞, for all fixed x > 0, then

(w0,M, θ,∆m
n , Q, u, p) ⊆ (w∞,M, θ,∆m

n , Q, u, p).

Proof. Let x = (xk) ∈ (w0,M, θ,∆m
n , Q, u, p), then, there exists positive

number ρ1 such that

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ1

))]pk

= 0.

Define ρ = 2ρ1. Since Mk is non-decreasing and convex and so, by using
inequality (1), we have

sup
r

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ

))]pk

= sup
r

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk + L− L

ρ

))]pk

≤ K sup
r

1
hr

∑
k∈Ir

1
2pk

[
Mk

(
qk

(uk∆m
n xk − L

ρ1

))]pk

+ K sup
r

1
hr

∑
k∈Ir

1
2pk

[
Mk

(
qk

( L

ρ1

))]pk

≤ K sup
r

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk − L

ρ1

))]pk

+ K sup
r

1
hr

∑
k∈Ir

[
Mk

(
qk

( L

ρ1

))]pk

< ∞.

Hence, x = (xk) ∈ (w∞,M, θ,∆m
n , Q, u, p). �

Theorem 2.4. Let 0 < inf pk = h ≤ pk ≤ sup pk = H < ∞ and M =
(Mk), M′ = (M ′

k) be two Musielak-Orlicz functions satisfying ∆2-condition,
then we have

(i) (w0,M′, θ,∆m
n , Q, u, p) ⊂ (w0,M◦M′, θ,∆m

n , Q, u, p);
(ii) (w,M′, θ,∆m

n , Q, u, p) ⊂ (w,M◦M′, θ,∆m
n , Q, u, p);



392 Kuldip Raj and Sunil K. Sharma 10

(iii) (w∞,M′, θ,∆m
n , Q, u, p) ⊂ (w∞,M◦M′, θ,∆m

n , Q, u, p).

Proof. Let x = (xk) ∈ (w0,M′, θ,∆m
n , Q, u, p) then, we have

lim
r→∞

1
hr

∑
k∈Ir

[
M ′

k

(
qk

(uk∆m
n xk

ρ

))]pk

= 0.

Let ε > 0 and choose δ with 0 < δ < 1 such that Mk(t) < ε, for 0 ≤ t ≤ δ.

Let yk = M ′
k

(
qk

(
uk∆m

n xk

ρ

))
, for all k ∈ N. We can write

1
hr

∑
k∈Ir

Mk[yk]pk =
1
hr

∑
k∈Ir,yk≤δ

Mk[yk]pk +
1
hr

∑
k∈Ir,yk≥δ

Mk[yk]pk .

So, we have
1
hr

∑
k∈Ir,yk≤δ

Mk[yk]pk ≤ [Mk(1)]H
1
hr

∑
k∈Ir,yk≤δ

Mk[yk]pk(2.1)

≤ [Mk(2)]H
1
hr

∑
k∈Ir,yk≤δ

Mk[yk]pk .

For yk > δ, yk < yk
δ < 1 + yk

δ . Since M ′
ks are non-decreasing and convex, it

follows that

Mk(yk) < Mk

(
1 +

yk

δ

)
<

1
2
Mk(2) +

1
2
Mk

(
2yk

δ

)
.

Since M = (Mk) satisfies ∆2-condition, we can write

Mk(yk) <
1
2
T

yk

δ
Mk(2) +

1
2
T

yk

δ
Mk(2) = T

yk

δ
Mk(2).

Hence,

(2.2)
1
hr

∑
k∈Ir,yk≥δ

Mk[yk]pk ≤ max

(
1,

(
T

Mk(2)
δ

)H
)

1
hr

∑
k∈Ir,yk≥δ

[yk]pk .

From equation (2) and (3), we have x = (xk) ∈ (w0,M◦M′, θ,∆m
n , Q, u, p).

This completes the proof of (i). Similarly, we can prove that

(w,M′, θ,∆m
n , Q, u, p) ⊂ (w,M◦M′, θ,∆m

n , Q, u, p)

and
(w∞,M′, θ,∆m

n , Q, u, p) ⊂ (w∞,M◦M′, θ,∆m
n , Q, u, p). �

Theorem 2.5. Let 0 < h = inf pk = pk < sup pk = H < ∞. Then, for a
Musielak-Orlicz function M = (Mk) which satisfies ∆2-condition, we have

(i) (w0, θ,∆m
n , Q, u, p) ⊂ (w0,M, θ,∆m

n , Q, u, p);
(ii) (w, θ, ∆m

n , Q, u, p) ⊂ (w,M, θ,∆m
n , Q, u, p);

(iii) (w∞, θ,∆m
n , Q, u, p) ⊂ (w∞,M, θ,∆m

n , Q, u, p).
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Proof. It is easy to prove so, we omit the details. �

Theorem 2.6. Let M = (Mk) be a Musielak-Orlicz function and 0 <
h = inf pk. Then, (w∞,M, θ,∆m

n , Q, u, p) ⊂ (w0, θ,∆m
n , Q, u, p) if and only if

(2.3) lim
r→∞

1
hr

∑
k∈Ir

Mk(t)pk = ∞,

for some t > 0.

Proof. Let (w∞,M, θ,∆m
n , Q, u, p) ⊂ (w0, θ,∆m

n , Q, u, p). Suppose that
(4) does not hold. Therefore, there are subinterval Ir(j) of the set of interval
Ir and a number t0 > 0, where

t0 = qk

(uk∆m
n xk

ρ

)
for all k,

such that

(2.4)
1

hr(j)

∑
k∈Ir(j)

Mk(t0)pk ≤ K < ∞, m = 1, 2, 3, . . . .

Let us define x = (xk) as follows

∆m
n xk =

{
ρt0 k ∈ Ir(j),
0 k /∈ Ir(j).

Thus, by (5), x ∈ (w∞,M, θ,∆m
n , Q, u, p). But x /∈ (w0, θ,∆m

n , Q, u, p). Hence,
(4) must hold.

Conversely, suppose that (4) holds and let x ∈ (w∞,M, θ,∆m
n , Q, u, p).

Then, for each r,

(2.5)
1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk

ρ

))]pk

≤ K < ∞.

Suppose that x /∈ (w0, θ,∆m
n , Q, u, p). Then, for some number ε > 0, there is

a number k0 such that for a subinterval Ir(j), of the set of interval Ir,

qk

(uk∆m
n xk

ρ

)
> ε, for k ≥ k0.

From properties of sequence of Orlicz function, we obtain

Mk

(
qk

(uk∆m
n xk

ρ

))pk

≥ Mk(ε)pk

which contradicts (4), by using (6). Hence, we get

(w∞,M, θ,∆m
n , Q, u, p) ⊂ (w0, θ,∆m

n , Q, u, p).

This completes the proof. �
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Theorem 2.7. Let 0 ≤ pk ≤ sk, for all k and let ( sk
pk

) be bounded. Then,

(w,M, θ,∆m
n , Q, u, s) ⊆ (w,M, θ,∆m

n , Q, u, p).

Proof. Let x = (xk) ∈ (w,M, θ,∆m
n , Q, u, s), write

tk = Mk

(
qk

(uk∆m
n xk − l

ρ

))sk

and µk = pk
sk

, for all k ∈ N. Then, 0 < µk ≤ 1, for all k ∈ N. Take 0 < µ ≤ µk,
for k ∈ N. Define sequences (uk) and (vk) as follows:

For tk ≥ 1, let uk = tk and vk = 0 and, for tk < 1, let uk = 0 and vk = tk.
Then, clearly, for all k ∈ N, we have

tk = uk + vk, tµk
k = uµk

k + vµk
k

Now, it follows that uµk
k ≤ uk ≤ tk and vµk

k ≤ vµ
k . Therefore,

1
hr

∑
k∈Ir

tµk
k =

1
hr

∑
k∈Ir

(uµk
k + vµk

k ) ≤ 1
hr

∑
k∈Ir

tk +
1
hr

∑
k∈Ir

vµ
k .

Now, for each k,

1
hr

∑
k∈Ir

vµ
k =

∑
k∈Ir

( 1
hr

vk

)µ( 1
hr

)1−µ

≤
(∑

k∈Ir

[( 1
hr

vk

)µ] 1
µ
)µ(∑

k∈Ir

[( 1
hr

)1−µ] 1
1−µ
)1−µ

=
( 1

hr

∑
k∈Ir

vk

)µ

and so,
1
hr

∑
k∈Ir

tµk
k ≤ 1

hr

∑
k∈Ir

tk +
( 1

hr

∑
k∈Ir

vk

)µ
.

Hence, x = (xk) ∈ (w,M, θ,∆m
n , Q, u, p). This completes the proof of the

theorem. �

Theorem 2.8. (i) If 0 < inf pk ≤ pk ≤ 1, for all k ∈ N, then

(w,M, θ,∆m
n , Q, u, p) ⊆ (w,M, θ,∆m

n , Q, u).

(ii) If 1 ≤ pk ≤ sup pk = H < ∞, for all k ∈ N, then

(w,M, θ,∆m
n , Q, u) ⊆ (w,M, θ,∆m

n , Q, u, p).

Proof. (i) Let x = (xk) ∈ (w,M, θ,∆m
n , Q, u, p), then

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk − L

ρ

))]pk

= 0.
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Since 0 < inf pk ≤ pk ≤ 1. This implies that

lim
r→∞

1
hr

∑
k∈Ir

Mk

(
qk

(uk∆m
n xk − L

ρ

))
≤ lim

r→∞

1
hr

∑
k∈Ir

Mk

(
qk

(uk∆m
n xk − L

ρ

))pk

,

therefore,

lim
r→∞

1
hr

∑
k∈Ir

Mk

(
qk

(uk∆m
n xk − L

ρ

))
= 0.

Therefore,
(w,M, θ,∆m

n , Q, u, p) ⊆ (w,M, θ,∆m
n , Q, u).

(ii) Let pk ≥ 1, for each k and sup pk < ∞. Let x = (xk) ∈ (w,M, θ,∆m
n ,

Q, u), then, for each ρ > 0, we have

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk − L

ρ

))]
= 0 < 1.

Since 1 ≤ pk ≤ sup pk < ∞, we have

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
qk

(uk∆m
n xk − L

ρ

))]pk

≤ lim
r→∞

1
hr

∑
k∈Ir

Mk

(
qk

(uk∆m
n xk − L

ρ

))
= 0 < 1.

Therefore, x = (xk) ∈ (w,M, θ,∆m
n , Q, u, p), for each ρ > 0. Hence,

(w,M, θ,∆m
n , Q, u) ⊆ (w,M, θ,∆m

n , Q, u, p).

This completes the proof of the theorem. �

Theorem 2.9. If 0 < inf pk ≤ pk ≤ sup pk = H < ∞, for all k ∈ N,
then

(w,M, θ,∆m
n , Q, u, p) = (w,M, θ,∆m

n , Q, u).

Proof. It is easy to prove so, we omit the details. �

3. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [8] and
Schoenberg [35] independently. Over the years and under different names,
statistical convergence has been discussed in the theory of Fourier analysis,
ergodic theory and number theory. Later on, it was further investigated from
the sequence space point of view and linked with summability theory by Fridy
[10], Connor [3], Salat [33], Isik [11], Savaş [34], Malkosky and Savas [19],
Kolk [13], Maddox [16], Tripathy and Sen [37], Mursaleen et. al. ([24], [25])
and many others. In recent years, generalizations of statistical convergence
have appeared in the study of strong integral summability and the structure
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of ideals of bounded continuous functions on locally compact spaces. Statisti-
cal convergence and its generalizations are also connected with subsets of the
stone-Cech compactification of natural numbers. Moreover, statistical conver-
gence is closely related to the concept of convergence in probability. The notion
depends on the density of subsets of the set N of natural numbers.

A subset E of N is said to have the natural density δ(E) if the following
limit exists: δ(E) = lim

n→∞
1
n

∑n
k=1 χE(k), where χE is the characteristic func-

tion of E. It is clear that any finite subset of N has zero natural density and
δ(Ec) = 1− δ(E).

In this section, we introduce lacunary ∆m
n uq-statistical convergent se-

quences and give some relations between lacunary ∆m
n uq-statistical convergent

sequences and (w,M, θ,∆m
n , q, u, p)-summable sequences.

A sequence x = (xk) is said to be lacunary ∆m
n uq-statistically convergent

to l, if for every ε > 0 lim
r

1
hr

∣∣{k ∈ Ir : q(uk∆m
n xk − l) ≥ ε

}∣∣ = 0. In this

case, we write xk → l
(
Sθ

(
∆m

n uq

))
. The set of all lacunary ∆m

n uq-statistically
convergent sequences is denoted by Sθ

(
∆m

n uq

)
.

Theorem 3.1. Let M = (Mk) be Musielak-Orlicz function and 0 < h =
infk pk ≤ pk ≤ supk pk = H < ∞. Then, (w,M, θ,∆m

n , Q, u, p) ⊂ Sθ(∆m
n uq).

Proof. Let x ∈ (w,M, θ,∆m
n , Q, u, p) and ε > 0 be given. Then,

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆m

n xk − l

ρ

))]pk

≥ 1
hr

∑
k∈Ir,q

(
uk∆m

n xk−l

ρ

)
≥ε

[
Mk

(
q
(uk∆m

n xk − l

ρ

))]pk

≥ 1
hr

∑
k∈Ir,q

(
uk∆m

n xk−l

ρ

)
≥ε

[
Mk(ε)

]pk

≥ 1
hr

∑
k∈Ir,q

(
uk∆m

n xk−l

ρ

)
≥ε

min
([

Mk(ε)
]h

,
[
Mk(ε)

]H)

≥ 1
hr

∣∣∣{k ∈ Ir : q
(uk∆m

n xk − l

ρ

)
≥ ε
}∣∣∣min

([
Mk(ε)

]h
,
[
Mk(ε)

]H)
.

Hence, x ∈ Sθ(∆m
n uq). �

Theorem 3.2. Let M = (Mk) be a Musielak-Orlicz function and 0 <
h = infk pk ≤ pk ≤ supk pk = H < ∞. Then, Sθ(∆m

n uq)⊂(w,M, θ,∆m
n , Q, u, p).



15 Some vector-valued sequence spaces 397

Proof. Suppose that M = (Mk) is bounded. Then, there exists an integer
K such that Mk(t) < K, for all t ≥ 0. Then,

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆m

n xk − l

ρ

))]pk

=
1
hr

∑
k∈Ir,q

(
uk∆m

n xk−l

ρ

)
≥ε

[
Mk

(
q
(uk∆m

n xk − l

ρ

))]pk

+
1
hr

∑
k∈Ir,q

(
uk∆m

n xk−l

ρ

)
<ε

[
Mk

(
q
(uk∆m

n xk − l

ρ

))]pk

≤ 1
hr

∑
k∈Ir,q

(
uk∆m

n xk−l

ρ

)
≥ε

max(Kh,KH) +
1
hr

∑
k∈Ir,q

(
uk∆m

n xk−l

ρ

)
<ε

[Mk(ε)]pk

≤ max(Kh,KH)
1
hr

∣∣∣{k ∈ Ir : q
(uk∆m

n xk − l

ρ

)
≥ ε
}∣∣∣

+ max
([

Mk(ε)
]h

,
[
Mk(ε)

]H)
.

Hence, x ∈ (w,M, θ,∆m
n , Q, u, p). �
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