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In the present paper we introduce some vector-valued sequence spaces defined by
a Musielak-Orlicz function M = (My). We also study some topological properties
and some inclusion relations between these spaces.
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1. INTRODUCTION

An Orlicz function M is a function, which is continuous, non-decreasing
and convex with M (0) =0, M(z) > 0 for z > 0 and M (z) — oo as x — oo.

Lindenstrauss and Tzafriri [15] used the idea of Orlicz function to de-
fine the following sequence space. Let w be the space of all real or complex
sequences = (xy), then

EM:{xew:gM(’xpk’)<oo}

which is called an Orlicz sequence space. The space £); is a Banach space with

the norm
> |2k
||| = int {p >0 ZM(—) < 1}.
k=1 p

It is shown in [15] that every Orlicz sequence space £y contains a subspace iso-
morphic to ¢, (p > 1). The As-condition is equivalent to M (Lz) < kLM (z),
for all values of x > 0, and for L > 1. An Orlicz function M can always be
represented in the following integral form

M(x) = / ",

where 7 is known as the kernel of M, is right differentiable for ¢ > 0, n(0) = 0,
n(t) > 0, n is non-decreasing and 7(t) — oo as t — oo.
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A sequence M = (M) of Orlicz function is called a Musielak-Orlicz
function, see ([18], [26]). A sequence N’ = (Nj) defined by

Ni(v) = sup{|vju — My(u) :u >0}, k=12,...

is called the complementary function of a Musielak-Orlicz function M. For
a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space taq
and its subspace ha4 are defined as follows

tam = {:):Ew:IM(cx) < 0o, for somec>0},
hap = {z € w: Ip(cw) < oo, for all ¢ > 0},

where Iy is a convex modular defined by
Im(z) = My(ar), == () € tar
k=1

We consider t g equipped with the Luxemburg norm
|| = inf{kz >0 IM(%) < 1}

or equipped with the Orlicz norm
%(1 + IM(kx)) k> 0}.

The Cesaro summable sequence spaces defined by an Orlicz function were
studied by Parashar and Choudhary [27], Bhardwaj and Singh [1], Mursaleen
et al. [23], Et et. al. [6] and many others.

Let ¢; and ¢2 be seminorms on a vector space X. Then, q; is said to be
stronger than ¢y if whenever (z,) is a sequence such that ¢;(z,) — 0, then
q2(x,) — 0 also. If each is stronger than the others ¢; and g2 are said to be
equivalent see [38].

Let I, ¢ and ¢y be the linear spaces of bounded, convergent and null
sequences x = (zj) with complex terms, respectively, normed by |z =
supy, |xg|, where k € N, the set of positive integers. Throughout the paper,
w(X), ¢(X), co(X) and I (X) will represent the spaces of all, convergent,
null and bounded X valued sequence spaces. For X = C, the field of complex
numbers, these represent the corresponding scalar valued sequence spaces.
The zero sequence is denoted by 6 = (0,0,...,0), where € is the zero element
of X.

The studies on vector valued sequence spaces are done by Rath and Sri-
vastava [28], Das and Choudhary [5], Leonard [14], Srivastava and Srivastava
[36], Tripathy and Sen [37], Et et. al. [6] and many others.

Let u = (ug) be a sequences of non-zero scalar. Then, for a sequence
space F, the multiplier sequence space E(u), associated with the multiplier

ol = inf {
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sequence u is defined as
E(u) = {(xr) € w: (upxy) € E}.

The studies on the multiplier sequence spaces are done by Colak [4],
Srivastava and Srivastava [36] and many others.

The notion of difference sequence spaces was introduced by Kizmaz [12],
who studied the difference sequence spaces I (A), ¢(A) and ¢y(A). The notion
was further generalized by Et and Colak [7] by introducing the spaces I (A™),
c¢(A™) and co(A™). Let m, n be non-negative integers, then, for Z = [, ¢
and cg, we have sequence spaces,

Z(A7) = {a = (wx) € w : (Al'ay) € 2},

where Az = (AMzy) = (A" 1z, — AP 2y ,) and Alzy = a2y, for all
k € N, which is equivalent to the following binomial representation

Aty =) (=1)" < :? > Thotno-

v=0

Taking m = n = 1, we get the spaces lo(A), ¢(A) and ¢o(A) introduced
and studied by Kizmaz [12].

A sequence of positive integers § = (k) is called lacunary if ky = 0,
0<ky <kpy1 and by, =k, — kyp—1 — o0 as r — oo. The intervals determined
by 6 will be denoted by I, = (k,_1,k,) and ¢, = % The space of lacunary
strongly convergent sequences Ny was defined by Freedman et al. [9] as

} 1
Ngz{xew:rlirglth\xk—l\:O, forsomel}.

" kel,

The space Ny is a BK-space with norm

el = sup (1 3 I(au)] )

" kel,

Freedman et al. [9] also gave some relation between Ny and the space
|o1] of strongly Cesaro summable sequences, which is defined by

n
lo1| = {x = (xg) : nlLr{:oZ |z — 1] =0, for some l}.

k=1
Strongly almost convergent sequence was introduced and studied by
Maddox [16] and Freedman [9]. Parashar and Choudhary [27] have intro-
duced and examined some properties of four sequence spaces defined by us-
ing an Orlicz function M, which generalized the well-known Orlicz sequence
spaces [C,1,p], [C,1,plo and [C, 1, p]eo. It may be noted here that the space of
strongly summable sequences were discussed by Maddox [17]. Subsequently,
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difference sequence spaces have been discussed by several authors see ([2], [20],
[21], [22], [23], [29], [30], [31], [32]) and references therein.

Let X be a linear metric space. A function p : X — R is called para-
norm, if

(1) p(z) >0, for all x € X;

(2) p(—x) = p(x), for all x € X
(3) p(z +y) < p(x) +p(y), for all z,y € X;

(4) if (0y,) is a sequence of scalars with o, — 0 as n — oo and (z,) is
a sequence of vectors with p(z, —z) — 0 as n — oo, then, p(opz, — ox) —
0 asn — oo.

A paranorm p for which p(z) = 0 implies = 0 is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known that
the metric of any linear metric space is given by some total paranorm (see
[38], Theorem 10.4.2, p. 183).

Let M = (Mj) be a Musielak-Orlicz function, p = (pg) be a bounded
sequence of positive real numbers and u = (u) be a sequence of positive
reals such that ug # 0 for all k&, X be a seminormed space over the field C
of complex numbers with the seminorm ¢, for each & € N. We define the
following sequence spaces in the present paper:

(w07M797 A?7 Qauvp) =

—{o = () € w(x) s Jim o 3 [ (M) 0
kel

T—00

as r — 0o, for some p > 0},

(w,M,@,AZL,Q,u,p) =
= {x:(xk)Ew(X) : lim }jrkz [Mk<qk(%Alexk_l))rk — 0,

T

as r — 00, forsomep>0andl€X},

and

(wOO7M’ 07 A?? Q? u7p) =

:{x:(xk)Ew(X) : Suphi Z [Mk(qk(%Ap"mm»]pk <00, for some p>0}.
" kel
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If we take M(x) = x, we get

(0,6, A7, Q) = {r= () €w(X) : Tim o= 3™ (an(EEE)) " o,

r—00
" kel, P

as r — 0o, for some ,0>O}7

(10,0.87. Quup) ={o=() € w(X): Jim = 3 (o (HEEE)) 0,
" kel,

as r — oo, for some p>0and [ € X},

and
(Woo, 0, AT, Q, u,p) =
= {x = (z) € w(X): sgp hlr k%j:r (qk (W))pk < o0, for some p > O}.

If we take p = (pg) = 1, for all k € N, we have

(wo, M, 0, Anm,Q,u):{a::(fck) cw(X): lim — Z M;, (qk(w» — 0,

" kel,

as r — 0o, for some p > 0},
m ukAmmk—l
(w’Maea An ’Q7u):{x:(xk)€w( ) lim — Z Mk <Qk(7)>_)0’
r—00 kEI»,» P
as r — 0o, forsomep>0andl€X},

and

(woo,/\/l 0,A%,Q,u) =

= {x: (zg) € suph Z ( (M» < o0, for somep>0}.

If we take M(z) =2z and u = e = (1,1,1,...,1) then, these spaces reduces to

(wO,O,AZL,Q,p):{x:(xk)Ew : lim h—Z( (A xk)) — 0,

T—00

as r — 0o, for some p > 0},
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(w,0,A7,Q.p) = { = () € w(X) ; Tli_{golr Z] (qk(wa;k—l)yk o

as r — 00, forsomep>0andl€X},

and
(U)OO,H,Anm,Q,p) =
1 A:Ln(l}k
= {2 = @) ew() sup— 37 (e
T kel,

The following inequality will be used throughout the paper. If 0 < pp <
suppr = H, K = max(1,2771) then,

Pk
)) < o0, for some p > O}.

(1.1) |ak+bk\p’€ SK{‘ak‘pk+‘bk’pk}

for all k and ag, by € C. Also, |a[P* < max(1,|a|™), for all a € C.
The main motive of this paper is to study some topological properties
and prove some inclusion relations between above defined sequence spaces.

2. MAIN RESULTS

THEOREM 2.1. Let M = (M) be a Musielak-Orlicz function, p = (p)
be a bounded sequence of positive real numbers and u = (uy) be any sequence of
strictly positive real numbers then, the classes of sequences (wg, M, 0, AT Q,
u,p), (W, M, 0, A" Q,u,p) and (Woo, M, 8, AT Q,u,p) are linear spaces over
the field of complex number C.

P?"OOf. Let o = (xk)ay = (yk) S (WO,M,Q,A?,Q,’U,,]?) and Ck,ﬁ € C. In
order to prove the result we need to find some p3 such that

iy 3 [ (B

P3

Since x = (%), y = (yx) € (wo, M, 0, A" Q,u,p), there exist positive numbers
p1, p2 > 0 such that

Jim o 3 [ ()] =0

and
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Define p3 = max(2|a|p1, 2|5|p2). Since M}, is non-decreasing convex func-
tion and so by using inequality (1), we have

5 o (2200

P3
m m
3 i fu( By
T kel, P3 P3
1 1 U AT T \\] Pk 1 1 U AT Y \\1 Pk
<8 3 g M (o ()| g 3 g [M (e (P2
kel, kel,

<16 3 (o (UE))) a3 [ ()
el kel

T

— 0asr — oo.

Thus, we have ax + fy € (wo, M, 0, AT, Q,u,p). Hence, (wg, M, 0, AT,
Q,u,p) is a linear space. Similarly, we can prove that (w, M, 0, A" Q,u,p)
and (Weo, M, 0, AT Q,u,p) are linear spaces. [

THEOREM 2.2. Let M = (M) be a Musielak-Orlicz function, p = (p)
be a bounded sequence of positive real numbers and u = (uy) be a sequence
of strictly positive real numbers. Then, (wo, M, 0, AT Q,u,p) is a topological
linear space paranormed by

o) =St ot {7 oo (i 3 [ ()] ) <)
i=1 7= " kel

where H = max(1, supy px) < oo.

Proof. (i) Clearly, g(x) > 0, for x = (x1) € (wo, M, 0, A", Q,u,p). Since
My (0) =0, we get g(0) = 0.

(i) g(—2) = g(x).

(iii) Let # = (xx),y = (yx) € (wo, M, 0, A7, Q,u,p) then, there exist
p1, p2 > 0 such that

an (15 [ (w2 )

and

ow (52 3 [ (w22 <1

" kel, P2
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Let p = p1 + p2, then by Minkowski’s inequality, we have

Sup(hlr kzl: [Mk <qk(ukAnm(CUk + yk))ﬂpk)

k P

T

= sup (;ﬂ 3 [Mk (qk(ukAZ(ikp-; Z/k:)))}pzj

< (525w (5 X P 5E)]")
+ (555w (i X P 05)]")

and thus,

m
gz +y) = q(zi+u)
=1

+ inf {(pl + o) ¢ sup (hi 3 [Mk(qk(“’“AW’“ + uk%ykmm);

" " kel, P
<1 p> ()}
= iqwi) +inf {(p1) ¥ : sup (hi AL (qk(wi’;m%)ﬂpk)é
=t " kel,
<1 p1> 0}
i iqwi) +int {(p2)# < sup (% > [ (qk(W))}pk)é
= " kel,

(iv) Finally, we prove that scalar multiplication is continuous. Let A be
any complex number by definition

g(Ax) = Z q(Ax;)+

=1

+inf{(p)%§ D sup (hi > [Mk(Qk(W))}pk)é <1, p> 0}

" " kel,
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— Y et
=1
sin (W sup (1 3 [ (B2 ) <1, > o],

T

where t = ﬁ. Hence, (wo, M, 0, A7, Q,u,p) is a paranormed space. [J
THEOREM 2.3. Let M = (M) be a Musielak-Orlicz function. If
sup, [Mg(x)]P* < oo, for all fivzed © > 0, then
(’LU(),M,Q,A?,Q,U,]?) C (wOO7M107Anm7Q>u7p)'

Proof. Let x = (xy) € (wo, M, 8, A", Q,u,p), then, there exists positive
number p; such that

. 1 ukAnml'k Pk
i e 3 (e (B 1)) =0
kel

P1

Define p = 2p;. Since M}, is non-decreasing and convex and so, by using
inequality (1), we have

i 2 [ ()]

1 A™ L—L P
= sup - [Mk<%<uk n Tk + ))} ’
T kel P

(ukA Tk — L))}Pk

sup

1
s Kosup 7 Ay Z 2Pk {M’“(q

x>

1 1 L Dk
#isw s 30 o (o))
r hr 2Pk T P1
A - L
< Ksw e 7 [y (o (H2 ) )|
T [ P1
el,
1 L P
#Ksw 30 [M(a()] " < o0
T kel 1

Hence, z = (x1) € (Woo, M, 0, AT Q,u,p). O

THEOREM 2.4. Let 0 < infpp =h < pp < suppr = H < 00 and M =
(M), M" = (M) be two Musielak-Orlicz functions satisfying Ag-condition,
then we have

(i) (w07 M0, A?: Q, u,p) - (w07 Mo M0, AZE Q, u,p);

(ii) (w7M/707 Anm7 Q7u7p) C (w7MOM,707 Anm7Q7u7p);
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(i) (oo, M', 0, AT, Q, 1, ) © (10, M o M, 0, AT, Q, 11, ).
Proof. Let x = (xf) € (wo, M',0, A", Q, u,p) then, we have
. 1 / ukA,T:L'k Pk .
5 P ()] o

T
r

Let € > 0 and choose § with 0 < § < 1 such that My(t) <, for 0 <t <é.
Let y = Mk <Qk (M>), for all £ € N. We can write

*ZMkyk; h > Mkz[yk]p’”rhi > Mfy™

" kel, k€L yp<s " kel y,>6

So, we have

1 g1
(2.1) j > My < [Mi(1 hf > Myl
ke]r,yk<§ kEIT,yk<6
1
g[Mk(Q)]Hh— > Mylyrl
kelr,yp<d

For yi. > 6, yp < %’“ <1+ %’c. Since M,’Cs are non-decreasing and convex, it
follows that

1 2
Mi(ye) < My (1+5) < SMu(2) + Mk < g’“) .
Since M = (M},) satisfies Ag—condition we can write

1
Mi(yr) < =T 0.(2) + 5T ; kL (2) = T%Mk@).

Hence,

1 M2\ 1
(2:2) hT > My < max (1, <T5> hT >
kel yp=>6 kel yp >0
From equation (2) and (3), we have z = (x}) € (wo, M o M, 0, AT Q, u,p).
This completes the proof of (i). Similarly, we can prove that

(va/797 AZL7 Qauvp) - (U),M © MI7 9) Azlv Quuap)

and

(Weo, M', 0, AT Q,u,p) C (Weo, Mo M O, AT Q,u,p). O

THEOREM 2.5. Let 0 < h =infp, = pr < suppy = H < oo. Then, for a
Musielak-Orlicz function M = (My,) which satisfies Aa-condition, we have

() (w079 Am) Qvuvp) - (w07M7 0, AZI? Q,u,p);

(i) (w,0, A7, Q,u,p) C (w, M, 0, A™, Q,u,p);

(iii) (woo,H,A?,Q,u,p) C (Weoo, M, O, AT Q,u,p).
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Proof. It is easy to prove so, we omit the details. [

THEOREM 2.6. Let M = (My) be a Musielak-Orlicz function and 0 <
h = inf py. Then, (weo, M, 0, A7, Q,u,p) C (wo, 8, AT, Q,u, p) if and only if

(2.3) lim 37 Myt = o,

for some t > 0.

Proof. Let (Woo, M, 0, A7, Q,u,p) C (wg, 8, A", Q,u,p). Suppose that
(4) does not hold. Therefore, there are subinterval I,.(;) of the set of interval
I, and a number £y > 0, where

A?’TL
to = %(L ° xk) for all k,
p
such that
1
(2.4) - > Mi(to)* <K <oo, m=123,....
7(5)

kelr(j)
Let us define 2 = (xy) as follows

m.. _ J pto keI,
An“‘{o k¢ Le)-

Thus, by (5), € (Weo, M, 0, A" Q,u,p). But x ¢ (wp, 0, A", Q, u,p). Hence,
(4) must hold.

Conversely, suppose that (4) holds and let z € (wso, M, 0, AT Q,u,p).
Then, for each r,

(2.5) hlrk; [Mk(qkngj”xk))rk < K < co.

Suppose that x ¢ (wp, 0, A", Q,u,p). Then, for some number € > 0, there is
a number kg such that for a subinterval I, (;), of the set of interval I,

>e¢, for k> ko.

ukAnma:k
gy (=)

From properties of sequence of Orlicz function, we obtain
A P
M, (QR(M» g > M (e)Px
p
which contradicts (4), by using (6). Hence, we get

('UJOO, Ma 07 A:Lna Q) pr) C (’LU(), 97 A:Lnu Q7 U,p)
This completes the proof. [
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THEOREM 2.7. Let 0 < py, < s, for all k and let (s’“) be bounded. Then,
(w7M797An 7Q7u7 S) = (w7M797An 7Q7u7p)'

Proof. Let x = (xf) € (w, M, 0, A", Q, u,s), write
_ up Az — 1\ 5%
ty = M, (%( P ))

and g = g—:, for all k € N. Then, 0 < ug <1, for all k € N. Take 0 < pu < py,
for k € N. Define sequences (uy) and (vg) as follows:

For ¢, > 1, let up, =t and vy = 0 and, for t;; < 1, let up = 0 and vy, = ty.
Then, clearly, for all £ € N, we have

te = up + v, hF =l 4 ol*
Now, it follows that uf* < uy <t and vi* < v). Therefore,

fzwk:fg © oy ol <fztk+hizvk.

" kel, " kel, kel kel

Now, for each k,

STV (ST (L

and so,

Zt“’“<—2tk+<h ka> .

kel

Hence, z = (zx) € (w, M,0, A" ,Q,u,p). This completes the proof of the
theorem. [

THEOREM 2.8. (i) If 0 < infpy < pr < 1, for all k € N, then
(w7M79’ A??Q’“?I)) g (w7'/\/l?9’ A?7Q7u)'

(ii) If 1 < pp < suppy = H < oo, for all k € N, then
(w7M79’ AZZ?Q7U) g (w7'/\/l79’ A?7Q7u7p)'

Proof. (i) Let x = (xf) € (w, M, 0, A", Q,u,p), then

Jim 32 ()] <o
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Since 0 < inf p, < pi < 1. This implies that

. 1 ukAZZSUk — L . 1 ukAZq”xk — L\\ Pk
3 (D) < g L5 (28
kel kel
therefore,
. 1 up Aty — L\
Jim -3 M (H=2 ) ) =0
kel
Therefore,
(w7 M? 9’ AZZ? Q7 u7p) g (w7 M? 97 A?? Q7 u)'
(ii) Let px > 1, for each k and sup py < oo. Let x = (z) € (w, M, 0, A",
Q,u), then, for each p > 0, we have
3 (5] o

" kel

Since 1 < p, < suppr < 00, we have

1 Az — L 1 Az — L
i 7 3 [ (o (HZ))] 7 < i e 5 (o ()
r—00 hr p r—00 hr P
kel ke
=0<1.
Therefore, v = (zx) € (w, M, 0, A", Q,u,p), for each p > 0. Hence,
(w7 M7 97 AZL7 Qa U) g (’U), M7 97 AZ”L7 Qa U,p)
This completes the proof of the theorem. [

THEOREM 2.9. If0 < infpg < pp < suppr = H < oo, for all k € N,
then
(U),M,H,AZL,Q,U,]?) = (va)97AZL7Q7u)'

Proof. It is easy to prove so, we omit the details. [

3. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [8] and
Schoenberg [35] independently. Over the years and under different names,
statistical convergence has been discussed in the theory of Fourier analysis,
ergodic theory and number theory. Later on, it was further investigated from
the sequence space point of view and linked with summability theory by Fridy
[10], Connor [3], Salat [33], Isik [11], Savas [34], Malkosky and Savas [19],
Kolk [13], Maddox [16], Tripathy and Sen [37], Mursaleen et. al. ([24], [25])
and many others. In recent years, generalizations of statistical convergence
have appeared in the study of strong integral summability and the structure



396 Kuldip Raj and Sunil K. Sharma 14

of ideals of bounded continuous functions on locally compact spaces. Statisti-
cal convergence and its generalizations are also connected with subsets of the
stone-Cech compactification of natural numbers. Moreover, statistical conver-
gence is closely related to the concept of convergence in probability. The notion
depends on the density of subsets of the set N of natural numbers.

A subset E of N is said to have the natural density d(F) if the following
limit exists: 0(E) = TLILH;O LS i1 xe(k), where yp is the characteristic func-
tion of E. It is clear that any finite subset of N has zero natural density and
I(E) =1—-06(F).

In this section, we introduce lacunary A]'u,-statistical convergent se-
quences and give some relations between lacunary Aj'u,-statistical convergent
sequences and (w, M, 0, A q,u, p)-summable sequences.

A sequence = = (xy) is said to be lacunary AJ’'u,-statistically convergent
to [, if for every e > Oli}}lh%‘{k € I : qugAltzy — 1) > e}‘ = 0. In this

case, we write xj — l(Sg (A:l”uq)). The set of all lacunary AJ'u,-statistically
convergent sequences is denoted by Sy (Aﬁuq).

THEOREM 3.1. Let M = (My) be Musielak-Orlicz function and 0 < h =
infg pr < p < supy, pr = H < 0o. Then, (w,M,H,AZL,Q,U,p) - SQ(Anmuq)

Proof. Let x € (w, M, 0, A" Q,u,p) and € > 0 be given. Then,

{k‘ €l : q(ukAgbpxk_l) > 6}‘ min <[Mk(e)]h, [Mk(e)]H)

Hence, x € Sp(AJu,). O

THEOREM 3.2. Let M = (M) be a Musielak-Orlicz function and 0 <
h = infy pr, < pi < supppr = H < 0o. Then, Sp(A'ug) C (w, M, 8, A7, Q,u,p).
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Proof. Suppose that M = (M},) is bounded. Then, there exists an integer
K such that My(t) < K, for all ¢ > 0. Then,

w2 e (o(2EE)) "

kel

S IC

S S AUC S

IN

hi > max(K", K" + hi > (M, (€)]P*

T T
Mo m —
kEIr,q(%>26 kEIr,q<%><e

e a(MER=) 2

+ max ([Mk(e)] , [Mk(e)]H>

< max(K", KH#)— h

Hence, z € (w,M,0,A7", Q,u,p). O

REFERENCES

[1] V.K. Bhardwaj and N. Singh, Some sequence spaces defined by Orlicz functions. Demon-
stratio Math. 33 (2000), 571-582.

[2] T. Bilgin, Some new difference sequences spaces defined by an Orlicz function. Filomat
17 (2003), 1-8.

[3] J.S. Connor, The statistical and strong p-Cesaro convergence of sequeces. Analysis (Mu-
nich) 8 (1988), 47-63.

[4] R. Colak, On some generalized sequence spaces. Commun. Fac. Sci. Univ. Ank. Sér. Al
Math. Stat. 38 (1989), 35-46.

[5] N.R. Das and A. Choudhary, Matriz transformation of vector valued sequence spaces.
Bull. Calcutta Math. Soc. 84 (1992), 47-54.

[6] M. Et, Y. Altin, B. Choudhary and B.C. Tripathy, On some classes of sequences defined
by sequences of Orlicz functions. Math. Inequal. Appl. 9 (2006), 335-342.

[7] M. Et and R. Colak, On some generalized difference sequence spaces. Soochow. J. Math.

1 (1995), 377-386.

[8] H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.

[9] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro-type summability spaces.
Proc. Lond. Math. Soc. (3) 37 (1978), 508-520.

[10] J.A. Fridy, On the statistical convergence. Analysis 5 (1985), 301-303.



398

Kuldip Raj and Sunil K. Sharma 16

(11]

(12]
(13]

(14]
(15]

[16]
[17]
18]
[19]

20]

(21]
(22]
23]

24]

(25]

[26]
27]

(28]
29]
(30]
(31]
32]
(33]
(34]

(35]

M. Isik, On statistical convergence of generalized difference sequence spaces. Soochow J.
Math. 30 (2004), 197-205.

H. Kizmaz, On certain sequence spaces. Canad. Math. Bull. 24 (1981), 169-176.

E. Kolk, The statistical convergence in Banach spaces. Acta. Comment. Univ. Tartu.
Math. 928 (1991), 41-52.

L.E. Leonard, Banach sequence spaces. J. Math. Anal. Appl. 54 (1976), 245-265.

J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces. Israel J. Math. 10 (1971),
379-390.

I.J. Maddox, Spaces of strongly summable sequences. Quart. J. Math. 18 (1967), 345—
355.

1.J. Maddox, On strong almost convergence. Math. Proc. Cambridge Philos. Soc. 85
(1979), 345-350.

L. Maligranda, Orlicz spaces and interpolation. Seminars in Mathematics 5, Polish Aca-
demy of Science, 1989.

E. Malkowsky and E. Savas, Some A-sequence spaces defined by a modulus. Arch. Math.
(Brno) 36 (2000), 219-228.

E. Malkowsky, M. Mursaleen and S. Suantai, The dual spaces of sets of difference se-
quences of order m and matriz transformations. Acta. Math. Sin. (Engl. Ser.) 23 (2007),
3, 521-532.

M. Mursaleen, Generalized spaces of difference sequences. J. Math. Anal. Appl. 203
(1996), 2, 738-745.

M. Mursaleen, Almost strongly reqular matrices and a core theorem for double sequences.
J. Math. Anal. Appl. 293 (2004), 2, 523-531.

M. Mursaleen, M.A. Khan and Qamaruddin, Difference sequence spaces defined by Orlicz
functions. Demonstratio Math. XXXII (1999), 145-150.

M. Mursaleen, Q.A. Khan and T.A. Chishti, Some new convergent sequence spaces
defined by Orlicz functions and statistical convergence. Ital. J. Pure Appl. Math. 9
(2001), 25-32.

M. Mursaleen and O.H.H. Edely, Statistical convergence of double sequences. J. Math.
Anal. Appl. 288 (2003), 1, 223-231.

J. Musielak, Orlicz spaces and modular spaces. Lecture Notes in Math. 1034 (1983).
S.D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions. Indian
J. Pure Appl. Math. 25 (1994), 419-428.

A. Rath and P.D. Srivastava, On some vector valued sequence spaces lf)g)(Ek7 A). Ganita
47 (1996), 1-12.

K. Raj, A.K. Sharma and S.K. Sharma, A sequence space defined by Musielak-Orlicz
functions. Int. J. Pure Appl. Math. 67 (2011), 475-484.

K. Raj, S.K. Sharma and A.K. Sharma, Some difference sequence spaces in n-normed
spaces defined by Musielak-Orlicz function. Armen. J. Math. 3 (2010), 127-141.

K. Raj and S.K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-
Orlicz functions. Acta Univ. Sapientiae Math. 3 (2011), 97-109.

K. Raj and S.K. Sharma, Some Multiplier Double Sequence spaces. Acta Mathematica
Vietnam. To Appear.

T. Salat, On statictical convergent sequences of real numbers. Math. Slovaca 30 (1980),
139-150.

E. Savag, Strong almost convergence and almost \-statistical convergence. Hokkaido
Math. J. 29 (2000), 531-566.

1.J. Schoenberg, The integrability of certain functions and related summability methods.
Amer. Math. Monthly 66 (1959), 361-375.



17 Some vector-valued sequence spaces 399

[36] J.K. Srivastava and B.K. Srivastava, Generalized sequence space co(X, A, p). Indian J.
Pure Appl. Math. 27 (1996), 73-84.

[37] B.C. Tripathy and M. Sen, Vector valued paranormed bounded and null sequence spaces
associated with multiplier sequences. Soochow J. Math. 29 (2003), 379-391.

[38] A. Wilansky, Summability through Functional Analysis. North-Holland, Mathematics
Stud. Tartu 85, Amsterdam, New York, Oxford, 1984.

Received 10 April 2012 Shri Mata Vaishno Devi University
School of Mathematics
Katra-182320, J& K, India
kuldipraj68@gmail.com
sunilksharma42@yahoo.co.in



