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1. INTRODUCTION AND PRELIMINARIES

Jordan algebras emerged in the early thirties with Jordan's papers [14]�
[16] on the algebraic formulation of quantum mechanics. Their applications are
in di�erential geometry, ring geometries, physics, quantum groups, analysis,
biology, etc (see [12, 13]). The current paper started as a poster presented at the
11-th International Workshop on Di�erential Geometry and its Applications, in
September 2013, at the Petroleum-Gas University from Ploiesti. It presents new
results on Jordan algebras and Jordan coalgebras, and it attempts to present
the general framework in which they are related to the quantum Yang-Baxter
equation (QYBE).

Since the apparition of the QYBE in theoretical physics [30] and statistical
mechanics [3, 4], many areas of mathematics, physics and computer science
have been enhanced: knot theory, non-commutative geometry, quantum groups,
analysis of integrable systems, quantum and statistical mechanics, quantum
computing, etc (see [23]). Non-additive solutions of the two-parameter form of
the QYBE are related to the solutions of the one-parameter form of the Yang-
Baxter equation; the theory of integrable Hamiltonian systems makes great use
of the solutions of the one-parameter form of the Yang-Baxter equation.

In the next section we prove a new theorem about Jordan algebras, we
explicitly de�ne Jordan coalgebras, and we present dual version of the above
theorem. Section 3 is a survey on the QYBE, and it ends with some directions of
study related to Jordan algebras and related topics. Our preferred bibliography
on QYBE consists of the following: [5, 10, 11, 19, 20, 25].
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Throughout this paper k is a �eld, and all tensor products appearing are
de�ned over k. For V a k-space, we denote by τ : V ⊗ V → V⊗V the twist
map de�ned by τ(v⊗w) = w⊗v, and by I : V → V the identity map of the
space V.

2. JORDAN ALGEBRAS AND JORDAN COALGEBRAS

If we consider an associative operation on a set V , then the elements of
this set satisfy the Jordan identity:

(2.1) (x2y)x = x2(yx) ∀x, y ∈ V.

If we start with an operation on a set V satisfying (2.1), then the elements
of this set might not satisfy the associativity axiom:

(2.2) (ab)c = a(bc) ∀a, b, c ∈ V.

The following question arises: �What conditions should we impose to an
operation on a set V, such that if the elements of V satisfy (2.1), then they also
satisfy (2.2)?�.

We will give an answer to this question below.
Let us recall that a Jordan algebra consists of a vector space V and a

linear map θ : V ⊗ V → V, θ(x⊗ y) = xy, such that (2.1) and

(2.3) xy = yx ∀x, y ∈ V

hold.

Theorem 2.1. Let V be a vector space spanned by a and b, which are

linearly independent. Let θ : V ⊗V → V, θ(x⊗y) = xy, be a linear map which

satis�es (2.3) and

(2.4) a2 = b , b2 = a .

Then: (V, θ) is a Jordan algebra ⇐⇒ (V, θ) is a non-unital commutative

(associative) algebra.

Proof. The indirect implication is obvious.
Let us prove the direct implication. Since every vector in V can be ex-

pressed in terms of a and b, and using the commutativity of θ, we only need to
check that

(2.5) (ba)a = ba2 , b2a = b(ba) ;

but these relations follow from (2.4) and ( 2.1). Let us further observe that if
ba = 1

βa+βb , β3 = −1 , then the relations ( 2.5) are veri�ed, otherwise (V, θ)
is not a Jordan algebra. �
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We will present the dual concept for a Jordan algebra below.

Let (V, θ) be a Jordan algebra,W ⊂ V⊗V⊗V⊗V the subspace generated
by vectors of the form y⊗x⊗x⊗x, x⊗y⊗x⊗x, x⊗x⊗y⊗x, x⊗x⊗x⊗y, and
P : V ⊗4 → W the projection associated to W . A Jordan algebra satis�es the
following relations:

θ ◦ τ = θ

θ ◦ (θ⊗I) ◦ (θ⊗I⊗2) ◦ P = θ ◦ (θ⊗I) ◦ (I⊗2⊗θ) ◦ P .

In a dual manner, a Jordan coalgebra has a comultiplication η : V → V⊗V
which satis�es:

τ ◦ η = η

Q ◦ (η⊗I⊗2) ◦ (η⊗I) ◦ η = Q ◦ (I⊗2⊗η) ◦ (η⊗I) ◦ η ,

where Q :W → V ⊗4 is the canonical inclusion associated to W; in other words,
the equality

(η⊗I⊗2) ◦ (η⊗I) ◦ η = (I⊗2⊗η) ◦ (η⊗I) ◦ η ,

should hold in W.

[2] gives a theorem dual to the Shirshov-Cohn theorem. We will now give
a theorem which is dual to Theorem 2.1.

Theorem 2.2. Let V be a vector space of dimension two, and two linear

maps ε, ζ : V → k, which are linearly independent in V ∗. Let η : V → V⊗V
be a linear map which satis�es τ ◦ η = η , (ε⊗ε) ◦ η = ζ , (ζ⊗ζ) ◦ η = ε.

Then: (V, η) is a Jordan coalgebra ⇐⇒ η is cocommutative and coasso-

ciative.

Remark 2.3. The proof of the previous theorem follows by duality. More-
over, if e, f form a basis in V , then the conditions from hypothesis imply:

η(e) = 1
β (e⊗f + f⊗e) + f⊗f ,

η(f) = β(e⊗f + f⊗e) + e⊗e .

It is obvious that η is cocomutative. The direct veri�cation that (V, η) is
a Jordan coalgebra is highly non-trivial. Likewise, the direct veri�cation that
η is coassociative is quite di�cult.

3. THE QYBE AND ITS APPLICATIONS

For R : V⊗V → V⊗V a k-linear map, letR12 = R⊗I, R23 = I⊗R, R13 =
(I⊗τ)(R⊗I)(I⊗τ).
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De�nition 3.1. An invertible k-linear map R : V⊗V → V⊗V is called a
Yang-Baxter operator if it satis�es the equation

(3.6) R12 ◦R23 ◦R12 = R23 ◦R12 ◦R23

An operator R satis�es (3.6) if and only if R ◦ τ satis�es the QYBE (if
and only if τ ◦R satis�es the QYBE):

(3.7) R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12

Examples of solutions to the QYBE from sets and Boolean algebras are
described in [17]. Other examples related to di�erential geometry are presented
in [13, 12]. An exhaustive list of invertible solutions for (3.7) in dimension 2 is
given in [9] and in the appendix of [11]. Finding all Yang-Baxter operators in
dimension greater than 2 is an unsolved problem. We will continue with more
examples below.

Let A be a (unitary) associative k-algebra, and α, β, γ ∈ k. We de�ne the
k-linear map: RAα,β,γ : A⊗A→ A⊗A, RAα,β,γ(a⊗b) = αab⊗1+β1⊗ab−γa⊗b.

Theorem 3.2 (S. D�asc�alescu and F.F. Nichita [7]). Let A be an associative

k-algebra with dimA ≥ 2, and α, β, γ ∈ k. Then RAα,β,γ is a Yang-Baxter

operator if and only if one of the following holds:

(i) α = γ 6= 0, β 6= 0;
(ii) β = γ 6= 0, α 6= 0;
(iii) α = β = 0, γ 6= 0.

If so, we have (RAα,β,γ)
−1 = RA1

β
, 1
α
, 1
γ

in cases (i) and (ii), and (RA0,0,γ)
−1 =

RA
0,0, 1

γ

in case (iii).

Remark 3.3. The Yang-Baxter equation plays an important role in knot
theory. Turaev [28] has described a general scheme to derive an invariant of
oriented links from a Yang-Baxter operator. In [22], we considered the problem
of applying Turaev's method to the Yang-Baxter operators derived from algebra
structures presented in the above theorem. Turaev's procedure produced the
Alexander polynomial of knots.

In dimension two, the operator from Theorem 3.2 (i) composed with the
twist map, RAα,β,α ◦ τ , can be expressed as:

(3.8)


1 0 0 0
0 1 0 0
0 1− q q 0
η 0 0 −q


where η ∈ {0, 1}, and q ∈ k − {0}. This form appears in the classi�cations of
[9, 11].
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De�nition 3.4. A colored Yang-Baxter operator is de�ned as a function
R : X × X → Endk(V ⊗ V ), where X is a set and V is a �nite dimensional
vector space over a �eld k. R satis�es the two-parameter form of the QYBE if:

(3.9) R12(u, v)R13(u,w)R23(v, w)=R23(v, w)R13(u,w)R12(u, v) ∀u, v, w∈X.

Theorem 3.5 (F.F. Nichita and D. Parashar [25]). Let A be an associative

k-algebra with dimA ≥ 2, and X ⊂ k. Then, for any two parameters p, q ∈ k,
the function R : X ×X → Endk(A⊗A) de�ned by

(3.10) R(u, v)(a⊗ b) = p(u− v)1⊗ ab+ q(u− v)ab⊗ 1− (pu− qv)b⊗ a,

satis�es the colored QYBE (3.9).

Theorem 3.6 (F.F. Nichita and B.P. Popovici [26]). Let A be an asso-

ciative k-algebra with dimA ≥ 2 and q ∈ k. Then the operator

(3.11) S(λ)(a⊗ b) = (eλ − 1)1⊗ ab+ q(eλ − 1)ab⊗ 1− (eλ − q)b⊗ a

satis�es the one-parameter form of the Yang-Baxter equation:

S12(λ1 − λ2)S13(λ1 − λ3)S23(λ2 − λ3) =

(3.12) = S23(λ2 − λ3)S13(λ1 − λ2)S12(λ1 − λ2).

Remark 3.7. The operators from Theorems 3.2, 3.5 and 3.6 are related via
some algebraic operations, or the Baxterization procedure from [8].

Let V , V ′, V ′′ be �nite dimensional vector spaces over k, and let R :
V⊗V ′ → V⊗V ′, S : V⊗V ′′ → V⊗V ′′ and T : V ′⊗V ′′ → V ′⊗V ′′ be three
linear maps. The Yang-Baxter commutator is a map [R,S, T ] : V⊗V ′⊗V ′′ →
V⊗V ′⊗V ′′ de�ned by

(3.13) [R,S, T ] := R12S13T 23 − T 23S13R12.

A system of linear mapsW : V⊗V → V⊗V, Z : V ′⊗V ′ → V ′⊗V ′, X :
V⊗V ′ → V⊗V ′, is called a WXZ-system if the following conditions hold:

(3.14) [W,W,W ] = 0 [Z,Z,Z] = 0 [W,X,X] = 0 [X,X,Z] = 0

The above is one type of a constant Yang-Baxter system that has been
studied in [25], and also shown to be closely related to entwining structures [5].

Theorem 3.8 (F.F. Nichita and D. Parashar [25]). Let A be a k-algebra,
and λ, µ ∈ k. The following is a WXZ-system:

W : A⊗A→ A⊗A, W (a⊗b) = ab⊗1 + λ1⊗ab− b⊗a,
Z : A⊗A→ A⊗A, Z(a⊗b) = µab⊗1 + 1⊗ab− b⊗a,
X : A⊗A→ A⊗A, X(a⊗b) = ab⊗1 + 1⊗ab− b⊗a.
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Remark 3.9. Let R be a colored Yang-Baxter operator, i.e.

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v) ∀ u, v, w ∈ X.

Then, if we let s, t ∈ X, we obtain the following WXZ-system:

W = R(s, s), X = R(s, t) and Z = R(t, t).

De�nition 3.10. A Lie superalgebra is a (nonassociative) Z2-graded alge-
bra, or superalgebra, over a �eld k with the Lie superbracket, satisfying the
two conditions:

[x, y] = −(−1)|x||y|[y, x
(−1)|z||x|[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0

where x, y and z are pure in the Z2-grading. Here, |x| denotes the degree of x
(either 0 or 1). The degree of [x, y] is the sum of degree of x and y modulo 2.

Let (L, [, ]) be a Lie superalgebra over k, and Z(L) = {z ∈ L : [z, x] =
0 ∀ x ∈ L}. For z ∈ Z(L), |z| = 0 and α ∈ k we de�ne:

φLα : L⊗L −→ L⊗L, x⊗y 7→ α[x, y]⊗z + (−1)|x||y|y⊗x .

Its inverse is:

φLα
−1

: L⊗L −→ L⊗L, x⊗ y 7→ αz ⊗ [x, y] + (−1)|x||y|y ⊗ x .

Theorem 3.11 (S. Majid [21]). Let (L, [, ]) be a Lie superalgebra and z ∈
Z(L), |z| = 0, and α ∈ k. Then: φLα is a YB operator.

Theorem 3.12 (F.F. Nichita and B.P. Popovici [26]). Let (L, [, ]) be a Lie

superalgebra z ∈ Z(L), |z| = 0, X ⊂ k, and α, β : X → k. Then, R : X ×X →
Endk(L⊗ L) de�ned by

(3.15) R(u, v)(a⊗ b) = α(u)[a, b]⊗ z + β(u)(−1)|a||b|a⊗ b,

satis�es the colored QYBE (3.9).

Remark 3.13. Let us consider the above data and apply it to Remark 3.9.
Then, if we let s, t ∈ X, we obtain the following WXZ-system:

W (a⊗ b) = R(s, s)(a⊗ b) = X(a⊗ b) = R(s, t)(a⊗ b) = α(s)[a, b]⊗ z +
β(s)(−1)|a||b|a⊗ b, and

Z(a⊗ b) = R(t, t)(a⊗ b) = α(t)[a, b]⊗ z + β(t)(−1)|a||b|a⊗ b.

Remark 3.14. The results presented in Theorems 3.11 and 3.12 hold for Lie
algebras as well. This is a consequence of the fact that these operators restricted
to the �rst component of a Lie superalgebra have the same properties.

The constructions of this section were extended for (G, θ)-Lie algebra in
[26]. For a (G, θ)-Lie algebra (see [18, 26]) we have:
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• 〈La, Lb〉 ⊆ La+b
• θ-braided (G-graded) antisymmetry: 〈x, y〉 = −θ(a, b)〈y, x〉
• θ-braided (G-graded) Jacobi id: θ(c, a)〈x, 〈y, z〉〉 + θ(b, c)〈z, 〈x, y〉〉 +
θ(a, b)〈y, 〈z, x〉〉 = 0

• θ : G×G→ C∗ color function


θ(a+ b, c) = θ(a, c)θ(b, c)
θ(a, b+ c) = θ(a, b)θ(a, c)

θ(a, b)θ(b, a) = 1

Remark 3.15. (i) In Theorem 3.2, if we replace the associative algebra A,
by a Jordan algebra J , we obtain an operator which satis�es the braid equation
if restricted to a subspace V =< a2⊗b⊗a, a⊗b⊗a2 : a, b ∈ J > of J⊗3.

(ii) [13, 12] present construction of solutions for the Yang-Baxter equa-
tion from Jordan triples and from symmetric spaces. Professor Dmitri Alek-
seevsky argued that these are intimately related, and, in some cases, they might
coincide.

(iii) If we have in mind the results of [5, 6], the study of Jordan triples
and the associated Yang-Baxter operators might lead to further constructions.
The operators (3.11) and (3.15) can be used to obtain θ-dependent triple linear
products (see [12], page 113); thus, they provide solutions for the equation
(2.2) of [12].

(iv) Professor Takaaki Nomura pointed out that the Theorem 2.1 resem-
bles the the Shirshov-Cohn Theorem. (The Shirshov-Cohn Theorem states
that any Jordan algebra with two generators is special.) [2] presents a dual
Shirshov-Cohn Theorem for Jordan coalgebras.

(v) A fruitful observation (made at the 7-th Congress of Romanian Math-
ematicians) was that there are interesting connections between commutative
Moufang loops and the Jordan identity. This is work in progress, and it is
related to [29].

(vi) The Tits-Kantor-Koecher construction could be another way to re-
late the Jordan algebras to the QYBE. This can be done via the construc-
tion of Yang-Baxter operators from Lie algebras. Thus, the duality between
Jordan algebras and Jordan coalgebras is included in the self-duality of Yang-
Baxter structures (see [27, 24] for details about the self-duality of Yang-Baxter
structures).
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