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1. INTRODUCTION, MAIN RESULTS

In 2008, in a �nally unpublished draft version of [2], F. Botelho and J.
Jamison launched the following conjecture:

Conjecture 1.1. Let X1,X2 be complex Banach spaces. Suppose t 7→U tk
(k= 1, 2) are maps R→U(Xk) :=

{
surjective linear isometries of Xk

}
with the

one-parameter group property U t+s1 ⊗ U t+s2 = [U t1 ⊗ U t2][U s1 ⊗ U s2 ] (t, s∈R) and

such that for every �xed bounded bilinear functional φ : X1 ×X2 → C and for

every couple (x1,x2) ∈ X1×X2, the function t 7→ φ
(
U t1x1, U

t
2x2

)
is continuous.

Then both t 7→ U t1 and t 7→ U t2 are strongly continuous one-parameter groups.1

Actually, they even outlined a proof for 1.1 under certain additional hy-
pothesis, implying a requirement on the representations of the elementary
forms which turned out to be contradictory due to the fact that we have
(κ1x1) ⊗ (κ2x2) = x1 ⊗ x2 whenever κ1κ2 = 1. Using a completely di�er-
ent probabilistic approach, in course of the proof of [10, Theorem 1.1] we have
shown the following slightly generalized version of the conjecture for the case
with Hilbert spaces:

1That is U t+sk = U tkU
s
k (t, s ∈ R, k = 1, 2) and the Banach space valued functions t 7→ U tkxk

are norm-continuous for every �xed couple x1,x2.
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Theorem 1.2. Let H(1), . . . ,H(N)be Hilbert spaces,
[
U(t) : t ∈ R

]
be a

one-parameter group where U(t) := U1,t ⊗ · · · ⊗ UN,t with unitary operators

Uk,t ∈ U(H(k)) having the following continuity property: t 7→
∏N
k=1〈Uk,txk|hk〉

is continuous for every �xed x1,h1∈H(1), . . . ,xN ,hN ∈H(N). Then we can �nd

functions κ1, . . . , κN : R→T(:= {κ∈C : |κ|= 1}) with
N∏
k=1

κk ≡ 1 such that the

families
[
κk(t)Uk,t : t∈R

]
are strongly continuous one-parameter groups. Thus,

by Stone's classical theorem [8, 12] there are possibly unbounded self-adjoint op-

erators Ak : dom(Ak) → H(k) de�ned on dense linear submanifolds such that

U(t)=
[

exp(itA1)
]
⊗ · · · ⊗

[
exp(itAN )

]
(t ∈ R).

At �rst sight our arguments in [10] rely heavily upon the Hilbert space
structure. In this paper we are going to investigate how far can we get rid of the
scalar product. In Section 2 we revise the arguments on adjusted component-
wise continuity of functions of type t 7→ x1,t⊗· · ·⊗xN,t. The new results extend
to the setting of uniformly convex spaces and we get the following conclusion.

Proposition 1.3. Let X(1), . . . ,X(N) be uniformly convex Banach spaces.

Assume
[
U(t) : t∈R

]
is a one-parameter group where U(t) =U1,t⊗ · · · ⊗ UN,t

with invertible bounded linear operators Uk,t ∈L(X(k)) such that the functions

t7→
∥∥U(t)(x(1)⊗· · ·⊗x(N))

∥∥ are all continuous. Then, for each index k=1, . . . , N
there exist multipliers ρk, ρ̃k : R→C such that,[

ρk(t)Uk,t : t ∈ R
]

is a strongly continuous family,[
ρ̃k(t)Uk,t : t ∈ R

]
is a one-parameter group.

Actually, we establish 1.3 a bit more generally: for spaces where weak
convergence implies norm convergence. Also we shall see that the multipliers
can be chosen to be bounded both from above and below from 0 (that is 0 <
inf
∣∣ρk∣∣, inf

∣∣ρ̃k∣∣ and sup
∣∣ρk∣∣, sup

∣∣ρ̃k∣∣ <∞). In particular, the conditions in 1.3
hold if the operators Uk,t are all isometries, and in this case we can choose even∣∣ρk∣∣ =

∣∣ρ̃k∣∣ ≡ 1.

Unfortunately the later considerations in ([3], Sections 4, 5) leading to
probabilistic arguments seem to be too closely related with Hilbert space struc-
ture. Minor modi�cations seem possible when replacing L2-estimates with Lp-
type estimates resulting in perhaps technically interesting facts with not much
farther generality from the original Hilbert setting of [3]. We do not proceed
into this direction.

A perhaps rather aesthetical generalization with equivalent general Ba-
nach norms in the Hilbert spaces instead of the ones de�ned by inner products
can be developed due to the amenability of the additive group of R.
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Theorem 1.4. In the setting of Theorem 1.2, let
∣∣∥∥·∥∥∣∣

1
, . . . ,

∣∣∥∥·∥∥∣∣
N

denote

equivalent Banach-norms on the respective spaces H(k) and let each operator

Uk,t be a surjective
∣∣∥∥ ·∥∥∣∣

k
-isometry (instead of being

〈
·
∣∣ ·〉

k
-unitary as supposed

originally). Then there are equivalent inner products
〈〈
·
∣∣ ·〉〉

k
on the respective

spaces H(k) such that the conclusions of Theorem 1.3 hold with suitable possibly

unbounded
〈〈
·
∣∣ · 〉〉

k
-self-adjoint operators Ak.

The above result is an immediate consequence of the following fact.

Proposition 1.5. Any linear automorphism of a bounded circular domain

D in a Hilbert space H is necessarily a scalar type operator as being a preserver

of some equivalent inner product. Given a strongly continuous one-parameter

group U :=
[
U t : t ∈ R

]
of linear automorphisms of D, or more generally a

bounded strongly continuous one-parameter subgroup of L(H), there exists an

equivalent U-invariant inner product on H.

Though it is likely that Proposition 1.5 appeared already in the literature
of Banach space geometry, as far we have not found proper references even af-
ter an inquiry with several colleagues. Therefore we devote the short Appendix
(Section 4) to its proof relying upon Banach limits. In [10] we emphasized the
natural connection of Theorem 1.2 with the Jordan theory of bounded sym-
metric domains during the Introduction of [10]. One of the aims of this note
is to work out the �rst step in this direction: in Section 3, with slight modi�-
cations of the proofs in [10], we obtain the full description of the unbounded
JB*-derivations of the in�nite-dimensional Cartan factors [5, 6] of Types 1, 2, 3.

Recall that, by a classical representation theorem by F. Riesz [8], each
Type 1 Cartan factor is isometrically isomorphic to some L(H(1),H(2)) with
suitable Hilbert spaces H(1),H(2). Theorem 1.2 furnishes the complete de-
scription of their unbounded JB*-derivations as operations of the form X 7→
A1X + XA2 with suitable possibly unbounded self-adjoint operators Ak ∈
L(H(k)). The next theorem provides the full description of the unbounded
JB*-derivations of the Cartan factors of types 2 and 3 which can be repre-
sented without loss of generality in the form F2 resp. F3 below.

Theorem 1.6. Let H be a Hilbert space with a �xed orthonormed basis

E = {ej : j ∈ J} and let X 7→ XT, X denote the operator transposition resp.

conjugation associated to E.2 Assume
[
U(t) : t ∈ R

]
resp.

[
V(t) : t ∈ R

]
are one-parameter groups of surjective linear isometries of F2 := {X ∈ L(H) :
X = XT} resp. F3 := {Z ∈ L(H) : Z = −ZT} such that all the functions

2The matrices of XT resp. X are the transpose resp. conjugate of the matrix of X with
respect to E: 〈XTej |e`〉 = 〈Xe`|ej〉 and 〈Xej |e`〉 = 〈Xej |e`〉 for all j, ` ∈ J .
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t 7→ 〈[U(t)X]x|y〉 resp. t 7→ 〈[V(t)Z]x|y〉 are continuous for all �xed x,y∈H
and X ∈ F2 resp. Z ∈ F3. Then

U(t)X = [exp(itA)]X[exp(itA)] (X ∈ F2, t ∈ R),
V(t)Z = [exp(itB)]Z[exp(itB)] (Z ∈ F3, t ∈ R) .

Thus, the possibly unbounded JB*-derivations of F3,F3 are of the form

X 7→ AX +XA resp. Z 7→ BZ +ZB for some possibly unbounded self-adjoint

operators A,B on H.

Since the surjective linear isometries of a spin factor (Cartan factor of
Type 4) are automatically unitary with respect to the underlying Hilbert space
scalar product. and since the exceptional Cartan factors (of Type 5, 6) are
�nite dimensional (16 resp. 27 dimensions), Theorem 1.6 completes the de-
scription of the possibly unbounded derivations of any Cartan factor. One may
intend to apply this result to get the description of the possibly unbounded
JB*-derivations for all JB*-triples3 via the Gelfand-Neimark type theorem by
Friedmen-Russo [3]. This latter asserts that any JB*-triple be embedded into
a suitable `∞-direct sum of Cartan factors as a weak*-dense norm-closed sub-
manifold. We �nish by raising the following two related open problems:

Problems 1.7. a) Describe the pointwise continuous (resp. weakly contin-
uous) one-parameter groups of surjective linear isometries for any JB*-triple.

b) Describe the pointwise weak*-continuous one-parameter groups of sur-
jective linear isometries for all JBW*-triples (JB*-triples with predual).

c) (Non-linear issue of 1.7). Describe the pointwise continuous (resp.
pointwise weakly-, resp. weak*-continuous in the JBW*-case) one-parameter
groups of holomorphic automorphisms of the unit ball of any JB*-triple. In
particular, in the case of the unit ball of a Hilbert space, are they all of the form

exp
([
a− 〈x|a〉x + iAx

]
∂
∂x

)
with suitable vector a and a possibly unbounded

self-adjoint operator A?

2. ADJUSTED CONTINUITY OF TENSOR MAPS

Henceforth, throughout the whole paper, let X(1), . . . ,X(N) be re�exive
Banach spaces with duals denoted by [X(k)]∗, . . . , [X(N)]∗ where weak conver-
gence along with convergence in norm entails norm convergence. That is, by
assumption, for each �xed index k = 1, . . . , N and for any net

[
xj : j ∈ J

]
in

3Banach spaces with holomorphically symmetric unit ball. They were introduced and
axiomatized algebraically by means of a three-variable product in 1983 by Kaup [7]. For an
elementary introduction see e.g. [6].
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X(k) we have

(2.1)
∥∥xj−x∥∥→ 0 whenever

∥∥xj∥∥→∥∥x∥∥ and
〈
xj−x, φ

〉
→0 (φ∈ [X(k)]∗).

Notice [1] that uniformly convex spaces are re�exive satisfying (2.1), and
a Banach space is uniformly convex if and only if its dual is uniformly smooth
(and vice versa, via re�exivity).

As usually, for the natural coupling between X(k) and [X(k)]∗ we write
〈x, φ〉

(
:= φ(x)

)
. Given any family x(k) ∈X(k), φ(k) ∈ [X(k)]∗ (k = 1, . . . , N),

x(1) ⊗ · · · ⊗ x(N) resp. φ(1) ⊗ · · · ⊗ φ(N) will denote the elementary N -linear
functionals

(
ψ(1), . . . , ψ(N)

)
7→
∏N
k=1〈x(k), ψ(k)〉 resp.

(
y(1), . . . ,y(N)

)
7→∏N

k=1〈y(k), φ(k)〉. Remark that

(2.2)
0 6= x(1) ⊗ · · · ⊗ x(N) = y(1) ⊗ · · · ⊗ y(N) if and only if

x(k)=ρkyk (k=1, . . . , N) with
N∏
k=1

ρk=1 for some ρ1, . . . , ρN ∈C.

It is well-known [9] that the tensor coupling〈
x(1) ⊗ · · · ⊗ x(N), φ(1) ⊗ · · · ⊗ φ(N)

〉
:=

N∏
k=1

〈x(k), φ(k)〉

admits a bounded N -linear extension to the projective tensor product of the
spaces X(k) with the injective tensor product of the dual spaces, and the latter
is a closed subspace in B(X(1), . . . ,X(N)) :=

{
bounded N -linear functionals

X(1) × · · ·X(N) → C
}
with its natural sup-norm. We shall speak of weak

convergence inX(1)⊗· · ·⊗X(N) in the sense of the tensor coupling. In particular

x
(1)
j ⊗ · · · ⊗ x

(N)
j −→w x(1) ⊗ · · · ⊗ x(N) if

∏
k φ

(k)(x
(k)
j ) →

∏
k φ

(k)(x(k)) for

�xed φ(k) ∈ [X(k)]∗ (k = 1, . . . , N).

Lemma 2.3. Let
[
e
(k)
j : j ∈ J

]
be nets of unit vectors in the respective

spaces X(k) such that

e
(1)
j ⊗ · · · ⊗ e

(N)
j −→w e(1) ⊗ · · · ⊗ e(N)

where e(k) ∈ X(k) (k = 1, . . . , N) are also vectors with norm 1. Then there are

nets of constants
[
κ
(k)
j : j ∈ J

]
(k = 1, . . . , N

)
in T := {κ∈C :

∣∣κ∣∣= 1} such

that
N∏
`=1

κ
(`)
j = 1,

∥∥κ(k)j e
(k)
j − e(k)

∥∥→ 0 (k = 1, . . . , N).

Proof. Let TN0 :=
{

(κ1, . . . , κN ) ∈ TN :
∏
k κk = 1

}
, and for any index

j ∈ J de�ne εj resp.
(
κ
(1)
j , . . . , κ

(N)
j

)
as the minimal value resp. a minimum

location of the continuous function ∆j(κ1, . . . , κN ) :=
N∑
k=1

∥∥κke(k)j − e(k)
∥∥ on
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the compact domain TN0 . We have to show εj → 0. As a consequence of the
compactness of T along with the weak compactness of the closed unit ball in
each X(k), we can choose a subnet

[
jν : ν ∈ N

]
of J along with vectors y(k)

of norm ≤ 1 such that

(2.4) εjν→ lim supj εj ,
〈
κ
(k)
j e

(k)
jν
−y(k), φ(k)

〉
→0 for all φ(k)∈ [X(k)]∗

for k=1, . . . , N . By passing to jν-limits we have

y(1) ⊗ · · · ⊗ y(N) = e(1) ⊗ · · · ⊗ e(N).

Since
∏
k

∥∥y(k)
∥∥ =

∥∥y(1)⊗· · ·⊗y(N)
∥∥ =

∥∥e(1)⊗· · ·⊗e(N)
∥∥ and ∥∥y(1)

∥∥, . . . ,∥∥y(1)
∥∥ ≤ 1, all the y(k) must be unit vectors. Since also

∥∥e(k)∥∥ = 1, in view

of (2.2) here we even have y(k) = ρ(k)e(k) with suitable constants ρ(k) ∈ T.
Thus, by our basic topological assumption on the equivalence of weak and
norm convergence on the unit sphere of the spaces X(k), from (2.4) it follows

κ
(k)
jν

e
(k)
jν
→ y(k) = ρ(k)e(k) in norm,

∆jν (κ
(1)
jν
, . . . , κ

(N)
jν

)→
N∑
k=1

∥∥y(k)−e(k)
∥∥=

N∑
k=1

∣∣ρ(k)−1
∣∣.

By the de�nition of the terms κ
(k)
j by means of ∆j , for any �xed tuple

(κ1, . . . , κN ) ∈ TN0 we have
∑

k

∥∥κke(k)j − e(k)
∥∥ ≥∑k

∥∥κ(k)j e
(k)
j − e(k)

∥∥. Since,
by taking a convergent subnet

[
(κ

(1)
jντ
, . . . , κ

(N)
jντ

) : τ ∈ T
]
with limit point

(ξ1, . . . , ξN ) ∈ TN0 , we have e
(k)
jντ

= [κ
(k)
jντ

]−1κ
(k)
jντ

e
(k)
jντ
→ ξkρ

(k)e(k). Hence, we
conclude that

N∑
k=1

∣∣κkξk − 1
∣∣ =

N∑
k=1

∥∥κkξkρ(k)e(k) − e(k)
∥∥ ≥ N∑

k=1

∥∥ρ(k)e(k) − e(k)
∥∥

for any (κ1, . . . , κN ) ∈ TN0 . With the choice κk := ξk (k = 1, . . . , N) we get

ρ(k) = 1 (k = 1, . . . , N) and lim supj εj = limν ∆jν (κ
(1)
jν
, . . . , κ

(N)
jν

) = 0 which
completes the proof. �

Proposition 2.5. Suppose e
(k)
t ∈ X(k) (t ∈ R, k = 1, . . . , N) are unit

vectors such that function t 7→ e
(1)
t ⊗ · · · ⊗ e

(N)
t is weakly continuous. Then

one can �nd a function t 7→ (κ
(k)
t , . . . , κ

(k)
t ) from R to TN0 :=

{
(κ1, . . . κN ) ∈

T :
∏
k κk = 1

}
such that the functions t 7→ κ

(k)
t e

(k)
t (k = 1, . . . , N) are

norm-continuous.

Proof. An analogous argument with the σ-compctness of the real line as
in ([10], proof of Lemma 2.3) shows: it su�ces to see that for any τ ∈ R
there is an open interval Iτ around τ where the statement holds. Let us �x
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τ arbitrary. By choosing a family φ(k) ∈ [X(k)]∗ (k = 1, . . . , N) of functionals

with
〈
e
(k)
τ , φ(k)

〉
=
∥∥φ(k)∥∥ = 1 (guaranteed by the Hahn-Banach theorem),

de�ne the interval Iτ as the connected component of τ in the open set
{
t ∈

R :
∏N
k=1〈e

(k)
t , φ(k)〉 6= 0

}
. For the parameters t ∈ Iτ , we de�ne the functions

t 7→ κ
(k)
t as

κ
(k)
t :=

∣∣〈e(k)t , φ(k)
〉∣∣/〈e(k)t , φ(k)

〉
(k < N), κ

(N)
t := κ

(1)
t · · ·κ

(N−1)
t .

To establish the norm continuity of the functions t 7→ κ
(k)
t φ

(k)
t (on Iτ ) we

consider a convergent sequence tn → t0 in Iτ and show that

(2.6)
∥∥κ(k)tn e

(k)
tn − κ

(k)
t0

e
(k)
t0

∥∥→ 0 .

In view of Lemma 2.3, there are convergent sequences
[
µ
(k)
tn : n = 1, 2, . . .

]
(k = 1, . . . , N) in T such that

∥∥µ(k)tn e
(k)
tn − e

(k)
t0

∥∥ → 0 (k = 1, . . . , N). Fix any
index k. To prove (2.6) we have to see that

κ
(k)
tn /µ

(k)
tn → κ

(k)
t0

.

Observe that κ
(k)
t

〈
e
(k)
t , φ(k)

〉
=
∣∣〈e(k)t , φ(k)

〉∣∣ for any t ∈ I0. Therefore
κ
(k)
tn

µ
(k)
tn

=
κ
(k)
tn

〈
e
(k)
tn , φ

(k)
〉

µ
(k)
tn

〈
e
(k)
tn , φ

(k)
〉 =

∣∣〈e(k)tn , φ(k)〉∣∣
µ
(k)
tn

〈
e
(k)
tn , φ

(k)
〉 =

=

∣∣µ(k)tn 〈e(k)tn , φ(k)〉∣∣
µ
(k)
tn

〈
e
(k)
tn , φ

(k)
〉 −→ ∣∣〈e(k)t0 , φ(k)〉∣∣〈

e
(k)
t0
, φ(k)

〉 = κ
(k)
t0
. �

Corollary 2.7. If t 7→ x
(k)
t (k = 1, . . . , N) are nowhere vanishing func-

tions R → X(k) with weakly continuous tensor product t 7→ x
(1)
t ⊗ · · · ⊗ x

(N)
t

whose norm t 7→
∏N
k=1

∥∥x(k)
t

∥∥ is also continuous, then there are multipli-

ers κ
(k)
t ∈ T (t ∈ R, k = 1, . . . , N) making the vector valued functions

t 7→ κ
(k)
t

∥∥x(k)
t

∥∥−1∏N
j=1

∥∥x(j)
t

∥∥1/Nx(k)
t norm-continuous.

Proof. A choice in accordance with Proposition 2.5 for the multipliers κ
(k)
t

to the functions t 7→ e
(k)
t :=

∥∥x(k)
t

∥∥−1x(k)
t suits the statement. �

For the next two lemmas let Z denote a complex topological vector space
with separating topological dual (thus, for any vector 0 6= z ∈ Z there is a
continuous linear functional ψ : Z→ C with ψ(z) = 1).

Lemma 2.8. Assume z1(t), z2(t) are linearly independent vectors in Z
for all t ∈ R and let ρ1, ρ2, µ : R → C \ {0} be functions making the maps

ζ1z1, ζ2z2, µ(z1 +z2) continuous. Then the functions ζ2z1, ζ1z2 are also contin-

uous.
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Proof. Let us �x any point t0 ∈ R. It su�ces to see the continuity of
ζ1/ζ2 at t0. To this aim let us choose a couple ψ1, ψ2 of continuous linear

functionals Z → C with det
[ψ1z1(t0) ψ1z2(t0)
ψ2z1(t0) ψ2z2(t0)

]
6= 0 and de�ne Pz :=

[
ψ1z
ψ2z

]
(z ∈ Z). This can be done by the linear independence of z1(t0), z2(t0). Then, by
the continuity of both t 7→ ζk(t)zk(t) (k = 1, 2), there is a neighborhood I of t0
where det

[
Pζ1(t)z1(t), P ζ2(t)z2(t)

]
6= 0 (t ∈ I) and the matrix valued function

t 7→ Lt :=
[
Pζ1(t)z1(t), P ζ2(t)z2(t)

]−1
is continuous on I. The continuity of

t 7→ µ(t)z1(t)+z2(t)] entails the continuity of the function t 7→ LtPµ(t)[z1(t)+

z2(t)] =
[µ(t)/ζ1(t)
µ(t)/ζ2(t)

]
on I whence the continuity of ζ1/ζ2 = [µ/ζ1]/[µ/ζ2] at t0 is

immediate. �

Lemma 2.9. Let t 7→Ut be a map R→GL(Z) and let ρ : R→C\{0} resp.
λ : R2 → C \ {0} be functions such that all the maps t 7→ ρ(t)Utz (z∈Z) are

continuous and we have Us+t = λ(s, t)UsUt for all s, t ∈ R. Then there exists

a function ρ̃ : R→ C \ {0} making
[
ρ̃(t)Ut : t ∈ R

]
a one-parameter group.

Proof. By induction on n, we see that there are functions λn : Rn → C\{0}
with

Us1+···+sn = λn(s1, . . . , sn)Us1 · · ·Usn

for all possible choices. We establish the symmetry of each λn by showing that
the family {Ut : t ∈ R} is Abelian. Since U0 = U0+0 = λ(0, 0)U2

0 , necessarily
U0 = λ(0, 0)−1Id. Hence, the identity λ(t,−t)UtU−t = U0 implies that U−t is
always a multiple of U−1t . Since, for n = 2, 3, . . . we have Unt = λn(t, . . . , t)Unt ,
the set {Uq : q∈Q} =

⋃∞
m=1{Un/m! : n∈Z} is Abelian as being the union of an

increasing sequence of Abelian families. By the density of the rational numbers
within R, our strong continuity assumption entails that {ρ(t)Ut : t ∈ R} and
hence, {Ut : t ∈ R} are Abelian.

From the relation Unt ∈ CUnt we see also that any operator of the form
ζUt admits arbitrary m-th roots of the form ηUt/m. Hence, for any given t ∈ R,
we can construct a sequence of group homomorphisms gt,m : {n/m! : n ∈ Z} →
GL(Z) (m = 1, 2, . . .) with gt,m+1 extending gt,m such that gt,m(1) = Ut and
gt,m(n/m!) ∈ CUnt/m! = CUnt/m! for all m,n. Thus, for any t ∈ R, there is a

homomorphism gt : R→GL(Z) along with a function ρ̃t : Q→C such that

gt(n/m!) = gt,m(n/m!) = ρ̃t(n/m!)Unt/m! (n = 0,±1,±2, . . . ; m = 1, 2, . . .).

Let us �x any Hamel basis H in R and de�ne the map g : R → GL(Z)
resp. the function ρ̃ : R→ C \ {0} as

g(q1t1 + · · ·+ qntn) := gt1(q1) · · · gtn(qn),
ρ̃(t1q1 + · · ·+ tnqn) := λn(q1t1, . . . , qntn)−1ρ̃t1(q1) · · · ρ̃tn(qn)
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for q1, . . . , qn ∈ Q and t1, . . . , tn ∈ H. We complete the proof by observing
that g is a group homemorphism with g(1) = U1 and satisfying the identities
g(q1t1+· · ·+qntn) = λn(q1t1, . . . , qntn)−1ρ̃(q1t1+· · ·+qntn)Uq1t1 · · ·Uqntn . �

Proof of Proposition 1.3.

By assumption, for any tuple
[
x(j)

]
∈ X(1) × · · ·X(N) the map t 7→

U1,tx
(1) ⊗ · · · ⊗ UN,tx

(N) is weakly continuous. An application of Corollary
2.7 establishes the existence of functions ρk,[x(j)] : R → C \ {0} such that

all the maps t 7→ ρk,[x(k)](t)Uk,tx
(k)(t) are continuous. Let us �x any family

0 6= x
(j)
0 ∈ X(k) (j = 1, . . . , N) and ρk(t) := ρ

k,[x
(j)
0 ]

(t). To complete the

proof that each
[
ρk(t)Uk,t : t ∈ R

]
is a strongly continuous family, it suf-

�ces to see that, given any index ` with vector x(`) ∈ X(`) which is linearly

independent of x
(`)
0 , the function t 7→ U`,tx

(`) is continuous. This fact fol-

lows immediately from Lemma 2.8 applied with Z := X(`), z1(t) := U`,tx
(`)
0 (t),

zz(t) := U`,tx
(`)(t), ζ1(t) := ρ`(t), ζ2(t) := ρ`,[y(k)](t), µ(t) := ρ`,[u(k)](t) where

y(k) := (1− δk`)x
(k)
0 + δk`y

(`) and u(k) := (1− δk`)x
(k)
0 + δk`y

(`) in terms of the
Kronecker-delta δk` := [1 for k = ` and 0 else].

It is a well-known consequence of (2.2) and the Schur lemma that the
factorization of a non-vanishing tensor products of linear operators is unique
up to constant factors with product one. Hence, the semigroup property U(s+
t) = U(s)U(t) entails the existence of functions λk : R2 → C \ {0} such that
Uk,s+t = λk(s, t)Uk,tUs,t s, t,∈R; k=1, . . . , N). Given any index `∈{1, . . . , N},
by applying Lemma 2.9 again with Z := X(`), the operators Ut := U`,t and
the function ρ := ρ` constructed above, we obtain the existence of a function
ρ̃` : R→C making the family

[
ρ̃`U`,t : t∈R

]
a one-parameter group. �

3. CARTAN FACTORS OF TYPES 2,3;

PROOF OF THEOREM 1.6

Throughout this section let H be an arbitrarily �xed complex Hilbert
space. We shall write h∗ := [H 3 x 7→ 〈x|h〉] for the dual functionals,
Ball(H) := {h ∈ H :

∥∥h∥∥ < 1} for the unit ball, ∂Ball(H) := {h ∈ H :∥∥h∥∥ = 1} for the unit sphere and g∗ ∧h∗ := g∗⊗h∗−h∗⊗g∗ for the basic an-
tisymmetric functionals, respectively, where g∗ ⊗ h∗ := [(x,y) 7→ g∗(x)h∗(y)].
The spaces F2,F3 in Theorem 1.6 are isomorphic copies of the Banach spaces
F2,F3 of all symmetric resp. antisymmetric continuous bilinear functionals
H × H → C. Recall [11] that in both cases k = 2, 3, the surjective linear
isometries of Fk are of the form [U ⊗ U ]Φ =

[
(x,y) 7→ Φ(Ux, Uy)

]
(Φ ∈ Fk).

Therefore the conclusion that, given any of the indices k ∈ {2, 3} with a one-
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parameter group
[
U(t) : t ∈ R

]
of the form U(t) = Ut ⊗ Ut such that all

the functions t 7→ Φ(Utx, Uty) (Φ ∈ Fk; x,x ∈ H) are continuous, there are
functions κ, κ̃ : R → T making

[
κ(t)Ut : t ∈ R

]
resp.

[
κ̃(t)Ut : t ∈ R

]
a strongly continuous family resp. a one parameter group is immediate from
Propositions 3.3, 3.5 and Corollary 3.4 below even with κ, κ̃ admitting only the
values ±1. Since the results of ([10], Sections 4, 5) concern only a single un-
derlying Hilbert space, hence, we can conclude Theorem 1.6 (without refering
to ([10], Section 6).

Lemma 3.1 ([10], Lemma 2.3). Suppose F : R → P(H) := {Tg :
〈g|g〉 = 1} is a continuous map with respect to the distance dist(Tg,Th) :=
min∣∣κ∣∣=∣∣λ∣∣=1

∣∣κg − λh∣∣. Then F(t) = Tht (t ∈ R) for some continuous func-

tion t 7→ ht ∈ ∂Ball(H).

Lemma 3.2. Let t 7→ et be a function R→ ∂Ball(H). If for any convergent

net tν → t in R there exists a constant σ∗ ∈ {−1, 1} along with a subnet tνα such

that etνα → σ∗et then there also exists σ : R→ {−1, 1} such that t 7→ σ(t)et is
continuous.

Proof. We can apply Lemma 3.1 as follows. Observe that t 7→ Tet
is necessarily continuous. Indeed, if tν → t then lim infν dist(Tetν ,Tet) ≤
lim infν minσ∗=±1

∣∣etν − σ∗et∣∣ = 0. Thus, Tet = Tht (t ∈ R) for some con-
tinuous function t 7→ ht ∈ ∂Ball(H), that is t 7→ κ(t)et is continuous for a
suitable function κ : R → T. For any point t ∈ R, we can choose an open
interval It around it such that

〈
κ(s)es

∣∣κ(t)et
〉
> 0 for all s ∈ It. Each func-

tion σt(s) := sign Re
(
κ(s)|κ(t)

)
is continuous on the the interval It. By the σ-

compactness of R, we can �nd a sequence · · · < τ−2 < τ−1 < τ0 < τ1 < τ2 < · · ·
such that each interval [τn−1, τn] is included in some of member of the family
{It : t ∈ R}, say [τn−1, τn] ⊂ Itn (n = 0,±1,±2, . . .). Then we obtain a function
σ suiting the requirements of the lemma by letting σ(t) := σt0(t) for t ∈ [τ−1, τ0],
and then, recursively for k = 1, 2, . . ., σ(t) := σ(τ−k)σt−k(τ−k)σt−k(t) for
t ∈ [τ−k−1, τ−k] and σ(t) := σ(τk−1)σtk(τk−1)σtk(t) for t ∈ [τk−1, τk], respec-
tively. �

Proposition 3.3. If t 7→ φ(et, et) with unit vectors et ∈ H is continuous

for all Φ ∈ F2 then there is a function σ : R→ {−1, 1} such that t 7→ σ(t)et is
continuous.

Proof. Given any vector h ∈ H, with the functional Φh(x,y) := h∗⊗h∗(∈
F2) we see that the function t 7→

〈
et
∣∣h〉2 is continuous. Consider a convergent

net tν → t ∈ R and let tνα(→ t) be a universal subnet [4] for it. Since the range
{et : t ∈ R} is contained in the weakly compact closed unit ball Ball(H), for
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some vector g ∈ Ball(H) we have〈
etνα

∣∣h〉→ 〈
g
∣∣h〉, 〈

g
∣∣h〉2 =

〈
et
∣∣h〉2 (h ∈ H).

Since the mapping h →
〈
g
∣∣h〉 is conjugate-linear, it follows that g ∈{

± et
}
. That is, for some σ∗ ∈ {±1} we have σ∗et = weak limνα etνα . It is

well-known that weak convergence entails norm convergence for nets of unit
vectors in Hilbert spaces. Therefore we even have σ∗et = norm limνα etνα
whence Lemma 3.2 applies. �

Corollary 3.4. Let t 7→ [et, ft] be a map R→ {orthonormed 2-frames}.
If the map t 7→ Φ(ξet + ηft, ξet + ηft) is continuous for all Φ ∈ F2 and ξ, η ∈
{0,±1} then there is a function σ : R → {−1, 1} such that t 7→ σ(t)[et, ft] is

continuous.

Proof. By Proposition 3.3, for some {−1, 1}-valued functions t 7→κ(t), t 7→
λ(t), t 7→ µ(t), the functions t 7→ λ(t)et, t 7→ κ(t)ft, t 7→ µ(t)2−1/2[et + ft]
are continuous. Therefore also t 7→

〈
λ(t)

∣∣et〉 = λ(t)µ(t) and similarly t 7→
κ(t)µ(u) are continuous and necessarily constant with value 1 or −1. Hence,
the statement is immediate. �

Proposition 3.5. Suppose t 7→ [et, ft,gt] is a function R→{orthonormed
3-frames} such that the functions t 7→ φ(et, ft), t 7→ φ(et,gt), t 7→ φ(ft,gt) are

continuous for all Φ ∈ F3. Then there exists a function σ : R → {−1, 1} such

that t 7→ σ(t)[et, ft,gt] is continuous.

Proof. Consider a convergent net tν → t ∈ R and let tνα(→ t) be again a
universal subnet. By the weak compactness of Ball(H), for some vectors e∗, f∗ ∈
Ball(H) we have

〈
etνα

∣∣h〉→ 〈
e∗
∣∣h〉, 〈ftνα ∣∣h〉→ 〈

f∗
∣∣h〉, 〈gtνα ∣∣h〉→ 〈

g∗
∣∣h〉 for

any �xed vector h ∈ H. Given any couple of vectors x,y ∈ H, with the
functional φx,y := x∗ ∧ y∗(∈ F3) we see that the function τ 7→

〈
eτ
∣∣x〉〈fτ ∣∣y〉−〈

fτ
∣∣x〉〈eτ ∣∣y〉 is continuous. Hence, we conclude that〈
eτ
∣∣x〉〈ft∣∣y〉− 〈ft∣∣x〉〈et∣∣y〉 =

〈
e∗
∣∣x〉〈f∗∣∣y〉− 〈f∗∣∣x〉〈e∗∣∣y〉 (x,y ∈ H).

That is we have e∗t ∧ f∗t = e∗∗ ∧ f∗∗ . It is well-known from classical linear
algebra that then for some constants λ11, λ12, λ21, λ22 ∈ C we have

e∗ = λ11et + λ12ft, f∗ = λ21et + λ22ft, det
[
λk,`

]
= 1.

In particular e∗ ∈ Cet+Cft. Similarly (with gtνα in place of ftνα ), also e∗ ∈
Cet + Cgt and therefore e∗ ∈ Cet that is e∗ = λet with

∣∣λ∣∣ ≤ 1. Analogously
f∗ = µft and g∗ = κgt with

∣∣µ∣∣, ∣∣κ∣∣ ≤ 1 as well. Since e∗t ∧f∗t = e∗∗∧f∗∗ , it follows
λµ = 1. Similarly λκ = µκ = 1. Therefore κ = λ = µ ∈ {−1, 1}. By writing
σt for the common value of κ, λ, µ, we get limνα etνα = σtet. According to
Lemma 1, for suitable functions t 7→ λ(t), t 7→ µ(t), t 7→ κ(t) ranging in {−1, 1}
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the functions t 7→ λ(t)et, t 7→ µ(t)ft, t 7→ κ(t)gt are continuous. In particular
also both t 7→ [λ(t)et]

∗ ∧ [λ(t)ft]
∗ and t 7→ e∗t ∧ f∗t are continuous entailing

the continuity and hence, the constant being of the {−1, 1}-valued function
t 7→ λ(t)µ(t). t 7→ [λ(t)et]

∗ ∧ [λ(t)ft]
∗. Thus, µ(t) ≡ λ(t) or µ(t) ≡ −λ(t).

Similarly κ(t) ≡ λ(t) or κ(t) ≡ −λ(t). In any case t 7→ λ(t)[et, ft,gt] must be
continuous. �

APPENDIX: PROOF OF PROPOSITION 1.5

Let U :=
[
U t : t ∈ R

]
be a strongly continuous one-parameter subgroup

of GL(H) with

M−1
∥∥x∥∥ ≤ ∥∥U tx∥∥ ≤M∥∥x∥∥ (x ∈ H, t ∈ R) .

Consider a Banach limit LR→∞ on the space Cb[0,∞) of all bounded
continuous functions [0,∞)→C. Thus, LR→∞ is a linear functional Cb[0,∞)→
C such that

(4.1) lim inf
R→∞

f(R) ≤ LR→∞f(R) ≤ lim sup
R→∞

f(R) whenever range(f) ⊂ R.

Since all the functions t 7→ U tx are continuous and bounded, the operation〈〈
x
∣∣y〉〉 := LR→∞

(
1

2R

∫ R

−R

〈
U tx

∣∣U ty〉 dt)
is well-de�ned for every couple of vectors x,y ∈ H. The sesquilinearity of the
product

〈
.
∣∣.〉 along with the inequalities (4.1) entail immediately that

〈〈
.
∣∣.〉〉 is

also a scalar product on H with

M−2
〈
x
∣∣x〉 ≤ 〈〈x∣∣x〉〉 ≤M2

〈
x
∣∣x〉 (x ∈ H) .

We complete the proof by showing the U-invariance of the new scalar
product as follows. Given any parameter s ∈ R, we have

∣∣∫
I

〈
U tx

∣∣U ty〉 dt∣∣ ≤
M2s

∥∥x∥∥2 whenever I is an interval of length
∣∣s∣∣. Therefore〈〈

U sx
∣∣U sy〉〉 = LR→∞

(
1
2R

∫ R
−R
〈
U t+sx

∣∣U t+sy〉 dt) =

= LR→∞

(
1
2R

∫ R+s
−R+s

〈
U tx

∣∣U ty〉 dt) =

= LR→∞

(
1
2R

[ ∫ R
−R +

∫ −R
−R+s +

∫ R+s
R

]〈
U tx

∣∣U ty〉 dt) =

= LR→∞

(
1
2R

∫ R+s
−R+s

〈
U tx

∣∣U ty〉 dt+O(R−1)
)

=

= LR→∞

(
1
2R

∫ R+s
−R+s

〈
U tx

∣∣U ty〉 dt) =
〈〈
x
∣∣y〉〉 .
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