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In this note, we consider Feller transition functions (Pt)t∈[0,+∞) de�ned on a Pol-
ish space (X, d), the associated families ((St, Tt))t∈[0,+∞) of Markov-Feller pairs,
we think of (St)t∈[0,+∞) as a semigroup of positive contractions of Cb(X) = the
Banach space of all real-valued bounded continuous functions de�ned on X, and
we assume that (St)t∈[0,+∞) has a generator A de�ned on the entire Cb(X). For
this type of transition function, we characterize completely the sets Γcpi and
Γcpie that appear in the KBBY (Krylov-Bogolioubov-Bebouto�-Yosida) ergodic
decomposition de�ned by (Pt)t∈[0,+∞) in terms of A, only. The above-mentioned
characterizations of Γcpi and Γcpie are a �rst step in a research program that con-
sists of articulating the KBBY decomposition in terms of the generator and then
using the results in order to study the decomposition for various continuous-time
time-homogeneous Markov processes (for a description of this research direction,
see the subsection 2. Transition functions of Markov processes in section 4. Fu-
ture research of the second author's paper Transition probabilities, transition

functions, and an ergodic decomposition, Bull. of the Transilvania Univ. of
Bra�sov, Vol. 15(50), Series B-2008; see also Introduction of the second author's
monograph Invariant Probabilities for Transition Functions, Springer, 2014.

We then use the characterizations of the sets Γcpi and Γcpie in terms of A
in order to study certain exponential one-parameter convolution semigroups of
probability measures, and to extend and strengthen a result of Hunt discussed
in Heyer's 1977 monograph Probability Measures on Locally Compact Groups.

AMS 2010 Subject Classi�cation: Primary: 47A35; Secondary: 37A30, 60J35,
60J05, 47D07.

Key words: convolution of measures, ergodic decomposition, strongly continu-
ous one-parameter semigroups, transition function, transition proba-
bility.

1. INTRODUCTION

It has been pointed out in the monograph [11] in Introduction that,
even though all the general results obtained in the above-mentioned mono-
graph are valid for various transition functions de�ned by continuous-time
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time-homogeneous Markov processes, most of the examples in [11] are transi-
tion functions de�ned by �ows or by one-parameter convolution semigroups of
probability measures, and that transition functions de�ned by Markov processes
are not studied in the monograph at all. The reason that transition functions
de�ned by Markov processes do not appear among the examples discussed in
[11] stems from the fact that these transition functions cannot be known ex-
plicitly (for details, see Subsection 2, Transition functions of Markov processes,
of Section 4, Future research, of the paper [10]). We will now explain brie�y
the situation.

Let (X, d) be a locally compact separable metric space, let (Pt)t∈[0,+∞) be
a Feller transition function, and let ((St, Tt))t∈[0,+∞) be the family of Markov
pairs de�ned by (Pt)t∈[0,+∞).

In general, St is a Bb(X)-valued linear operator de�ned on Bb(X) for
every t ∈ [0,+∞), where Bb(X) is the Banach space of all real-valued Borel
measurable bounded functions on X (the norm on Bb(X) is the usual sup
(uniform) norm). Since (Pt)t∈[0,+∞) is a Feller transition function, we also have
that Stf ∈ Cb(X) for every f ∈ Cb(X) and every t ∈ [0,+∞), where Cb(X) is
the Banach subspace of Bb(X) of all continuous functions in Bb(X). Thus, we
may and, most of the time in this paper, we do think of the restriction of St to
Cb(X) as a positive contraction of Cb(X) for every t ∈ [0,+∞).

Clearly, if we think of St, t ∈ [0,+∞), as positive contractions of Cb(X),
then (St)t∈[0,+∞) is a semigroup of positive contractions of Cb(X).

As usual, we say that (St)t∈[0,+∞), as a semigroup of contractions of
Cb(X), is strongly continuous (see Engel and Nagel's monograph [1], p. 36)
if lim

t→t0
Stf exists in the norm topology of Cb(X) for every f ∈ Cb(X) and

t0 ∈ [0,+∞).

We will assume that (St)t∈[0,+∞) is strongly continuous.

We will also assume that P0(x,A) = 1A(x) for every x ∈ X and A ∈
B(X) = the σ-algebra of all the Borel subsets of X; this means that, as an
operator on Cb(X), S0 is the identity operator IdCb(X) on Cb(X).

Set D =

f ∈ Cb(X)

∣∣∣∣∣∣
lim
t→0
t>0

Stf−f
t exists in the

norm topology of Cb(X)

 .

Now de�ne the Cb(X)-valued operatorA onD as follows: Af = lim
t→0
t>0

Stf−f
t

for every f ∈ D. A is called the generator of the semigroup (St)t∈[0,+∞), and
it is the custom (to which we adhere, as well) to use the notation D(A) for D.

Since we assume that (St)t∈[0,+∞) is strongly continuous and that
S0 = IdCb(X), using Theorem 1.4, pp. 51�52 of Engel and Nagel [1], we obtain
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that D(A) is a dense subspace of Cb(X) and that the generator A determines
the semigroup uniquely.

Now, assume that (Pt)t∈[0,+∞) is the transition function of some continuous-
time time-homogeneous Markov process. As pointed out on p. 160 in Ethier
and Kurtz's monograph [2], in general, in most cases of interest, the transition
functions are not known explicitly. What is usually known is that (Pt)t∈[0,+∞)

is a Feller transition function, that the semigroup (St)t∈[0,+∞), thought of as a
semigroup on Cb(X), is strongly continuous, and that S0 = IdCb(X); moreover,
even though the transition function (Pt)t∈[0,+∞) cannot be studied directly,
the generator A of (St)t∈[0,+∞) can be obtained for the transition function
(Pt)t∈[0,+∞); also, since (Pt)t∈[0,+∞) is de�ned by a Markov process, it follows
that (Pt)t∈[0,+∞) satis�es the s.m.a. and is pointwise continuous, so (Pt)t∈[0,+∞)

de�nes an ergodic (KBBY) decomposition ofX (that is, the results of Chapter 5
and Section 6.2 of [11] hold true for (Pt)t∈[0,+∞)).

Finally, since the generator A de�nes the semigroup (St)t∈[0,+∞) on Cb(X)
uniquely, extending a bit the discussion that appears in Subsection 2, Transi-
tion Functions of Markov Processes of Section 4, Future Research of [10] and
using Proposition 2.1.2 of [11], we obtain that, actually, the generator A of
(St)t∈[0,+∞) de�nes uniquely the transition function (Pt)t∈[0,+∞).

From the above discussion, it follows that, in theory, we should be able
to obtain the sets that appear in the KBBY ergodic decomposition de�ned by
(Pt)t∈[0,+∞) using the generator A, only. This research direction is the topic of
Subsection 2 of Section 4 of [10].

In the present paper, we take a �rst step in using the generator to study
the sets that appear in the decomposition.

Thus, we will characterize the elements of the sets Γcpi and Γcpie that
appear in the KBBY decomposition in terms of the generator A in the case
when D(A) = Cb(X); that is, in the case when A satis�es the conditions of
Corollary 2.1.5, p. 52, of Engel and Nagel [1]. By taking advantage of various
results discussed in the Ph.D. thesis [5], we will obtain the characterizations
in the more general situation when X is a Polish space (that is, when X is
a separable complete metrizable topological space; in order to simplify the
exposition, we will always assume given a metric d compatible with the topology
on X).

Then, we will exhibit a family of Feller transition functions (Pt)t∈[0,+∞)

that have the property that the generator A of the semigroup (St)t∈[0,+∞)

(where (St)t∈[0,+∞) is thought of as a semigroup of positive contractions of
Cb(X)) satis�es the conditions of the above-mentioned Corollary 2.1.5 of Engel
and Nagel [1]. The transition functions (Pt)t∈[0,+∞) under consideration here
are de�ned by exponential one-parameter convolution semigroups (µt)t∈[0,+∞)
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of probability measures de�ned by an element µ ∈ M(H), µ ≥ 0, ‖µ‖ = 1,
where H is a locally compact separable metric semigroup that has a neutral
element (for the de�nition and various properties of (Pt)t∈[0,+∞), see Exam-
ple 2.2.14 and Proposition 2.2.15, both in [11]). By proving that the generator
A of the semigroup (St)t∈[0,+∞) of such a transition function (Pt)t∈[0,+∞) satis-
�es the conditions of Corollary 2.1.5, p. 52, of Engel and Nagel [1], we extend
and strengthen (i) of Part A of Theorem 4.2.8 (the Hunt representation the-
orem) on pp. 268�269 of Heyer's monograph [3] for this type of transition
functions (see also Theorem 4.1.14, Theorem 4.1.16, and Theorem 4.2.1, all of
them in [3]).

Finally, we discuss an application of all the above-mentioned results in
the case when (Pt)t∈[0,+∞) is the transition function de�ned by an exponential
one-parameter convolution semigroup (µt)t∈[0,+∞) of probability measures gen-
erated by µ ∈M(H), µ ≥ 0, ‖µ‖ = 1, in the case when H is a compact metric

group and H =
∞⋃
n=1

(supp (µn)).

The paper is organized as follows: in the next section (Section 2) we
make an attempt to unify the terminology used by each of the authors of this
paper earlier and we obtain the general results (the characterizations of the
elements of Γcpi and of Γcpie), and in the last section (Section 3) we discuss the
transition functions de�ned by exponential one-parameter convolution semi-
groups (µt)t∈[0,+∞) of probability measures generated by a probability measure
µ ∈M(H), where H is a locally compact separable metric semigroup that has
a neutral element.

2. THE SETS Γcpi AND Γcpie

We start with a lemma.

Lemma 2.1. Let t ∈ R, t > 0, and let (gn)n∈N∪{0} be a sequence of
real-valued bounded measurable functions de�ned on [0, t] such that the se-

ries
∞∑
n=0

|gn(s)| converges for every s ∈ [0, t] and such that the limit function

h : [0, t]→ R, h(s) =

∞∑
n=0

|gn(s)| for every s ∈ [0, t], is a bounded function. Then

the function g : [0, t] → R, g(s) =

∞∑
k=0

gk(s) for every s ∈ [0, t], is well-de�ned

(in the sense that the series
∞∑
k=0

gk(s)converges (conditionally) for every s∈[0, t])



5 On an ergodic decomposition de�ned in terms of certain generators 21

and is Lebesgue integrable on [0, t]. Moreover,

t∫
0

g(s) ds =

∞∑
n=0

t∫
0

gn(s) ds (that

is

t∫
0

∞∑
n=0

gn(s) ds =
∞∑
n=0

t∫
0

gn(s) ds, so we can switch the integration and sum-

mation signs).

Proof. Clearly, the series
∞∑
k=0

gk(s) converges conditionally because the

series converges absolutely for every s ∈ [0, t]. Therefore, the function g :

[0, t]→ R, g(s) =
∞∑
k=0

gk(s) for every s ∈ [0, t], is well-de�ned.

Let fn : [0, t]→ R be de�ned by fn(s) =

n∑
k=0

gk(s) for every s ∈ [0, t] and

n ∈ N ∪ {0}.

Then |fn(s)| ≤
n∑
k=0

|gk(s)| ≤ h(s) for all n ∈ N and s ∈ [0, t]; moreover, the

function h is integrable with respect to the Lebesgue measure on [0, t] because
h is bounded. Therefore, we can apply the Lebesgue dominated convergence
theorem to the functions fn, n ∈ N ∪ {0}, g, and h in order to obtain that
the functions gn and fn, n ∈ N ∪ {0}, and g are integrable, and that the se-

quence

 t∫
0

fn(s) ds


n∈N∪{0}

converges to

t∫
0

g(s) ds (that is, that the sequence

 t∫
0

(
n∑
k=0

gk(s)

)
ds


n∈N∪{0}

converges to

t∫
0

g(s) ds).

Since

t∫
0

(
n∑
k=0

gk(s)

)
ds =

n∑
k=0

t∫
0

gk(s) ds for every n ∈ N∪{0}, we obtain

that the sequence of partial sums

 n∑
k=0

t∫
0

gk(s) ds


n∈N

converges to

t∫
0

g(s) ds;

that is,
∞∑
k=0

t∫
0

gk(s) ds =

t∫
0

( ∞∑
k=0

gk(s)

)
ds. �

As mentioned in Introduction, in this paper, a Polish space is a metric
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space (X, d) such that the topology de�ned by d is complete (every Cauchy
sequence of elements of X is convergent (in X)) and separable.

Given a Polish space (X, d), we use the notation Cb(X) for the Banach
space of all real-valued continuous bounded functions on X, where the norm
on Cb(X) is the usual uniform (sup) norm ‖ ‖∞: ‖f‖∞ = sup

x∈X
|f(x)| for every

f ∈ Cb(X).

Lemma 2.2. Let (X, d) be a Polish space, and let Q : Cb(X) → Cb(X)
be a linear bounded operator. Then, for every f ∈ Cb(X), x ∈ X, and

t ∈ (0,+∞), the function g : [0, t] → R de�ned by g(s) =
∞∑
k=0

skQkf(x)

k!
for

every s ∈ [0, t] (where 00 = 0 and Q0f = f) is well-de�ned (in the sense

that the series
∞∑
k=0

skQkf(x)

k!
converges whenever s ∈ [0, t]), is measurable, and

is Lebesgue integrable on [0, t]; also, the functions gk : [0, t] → R de�ned by

gk(s) =
skQkf(x)

k!
for every s ∈ [0, t] and k ∈ N ∪ {0} are integrable with re-

spect to the Lebesgue measure on [0, t], and

t∫
0

g(s) ds =
∞∑
k=0

t∫
0

gk(s) ds (that is,

t∫
0

( ∞∑
k=0

skQkf(x)

k!

)
ds =

∞∑
k=0

t∫
0

skQkf(x)

k!
ds).

Proof. Let f ∈ Cb(X), x ∈ X, and t ∈ (0,+∞). Also, set M = ‖Q‖, and
consider the functions g and gk, k ∈ N ∪ {0}, de�ned in the lemma.

Since
∞∑
k=0

|gk(s)| =
∞∑
k=0

sk|Qkf(x)|
k!

≤
∞∑
k=0

skMk‖f‖∞
k!

= esM‖f‖∞,

it follows that the series
∞∑
k=0

gk(s) =
∞∑
k=0

skQkf(x)

k!
converges conditionally (be-

cause it converges absolutely) for every s ∈ [0, t]. Therefore, the function

g : [0, t]→ R, g(s) =

∞∑
k=0

gk(s) for every s ∈ [0, t], is well-de�ned.

Clearly, g is measurable because each gk is measurable, k ∈ N ∪ {0}, and

g is the pointwise limit of the sequence of functions

(
n∑
k=0

gk

)
n∈N∪{0}

.
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Using the fact that

(2.1) |g(s)| ≤
∞∑
k=0

|gk(s)| ≤ esM‖f‖∞ ≤ etM‖f‖∞

for every s ∈ [0, t], we obtain that g is a bounded function. Since the Lebesgue
measure on [0, t] is �nite, it follows that g is Lebesgue integrable on [0, t].

The functions gk, k ∈ N∪{0}, are bounded measurable functions because
these functions are continuous and de�ned on the closed bounded interval [0, t].

Using (2.1) we obtain that the function h : [0, t] → R de�ned by

h(s) =

∞∑
k=0

|gk(s)| for every s ∈ [0, t], is well-de�ned (in the sense that
∞∑
k=0

|gk(s)|

converges for every s ∈ [0, t]) and is a bounded function. Since h is also mea-
surable, it follows that we can apply Lemma 2.1 to h, g, and gk, k ∈ N ∪ {0}.

Thus, we obtain that

t∫
0

g(s) ds =
∞∑
k=0

t∫
0

gk(s) ds. �

Let (X, d) be a Polish space.

As usual, we denote byM(X) the Banach space of all real-valued signed
Borel measures on X, where the norm onM(X) is the total variation norm.

Also as usual (see, for instance, p. 30 of [8]), a linear operator T :M(X)→
M(X) is called a Markov operator if the following two conditions are satis�ed:

(MO1) T is a positive operator; that is, Tµ ≥ 0 for every µ ∈ M(X),
µ ≥ 0.

(MO2) ‖Tµ‖ = ‖µ‖ whenever µ ∈M(X), µ ≥ 0.

Recall that Bb(X) denotes the Banach space of all real-valued bounded
Borel measurable functions on X, where the norm on Bb(X) is the usual sup
(uniform) norm: ‖f‖ = sup

x∈X
|f(x)| for every f ∈ Bb(X).

We will use the notation 〈f, µ〉 for
∫
X

f(x) dµ(x), where f ∈ Bb(X) and

µ ∈M(X).

A Markov operator T :M(X)→M(X) is said to be regular if there exists
a map S : Bb(X) → Bb(X) such that 〈Sf, µ〉 = 〈f, Tµ〉 for every f ∈ Bb(X)
and µ ∈M(X).

It can be shown that if T is a regular Markov operator, the map S that
appears in the de�nition of the regularity of T is unique, is a linear positive
contraction, and has the property that S1X = 1X .

Given a regular Markov operator T : M(X) → M(X) and the operator
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S : Bb(X) → Bb(X) that appears in the de�nition of the regularity of T , the
ordered pair (S, T ) is called a Markov pair.

We will denote by B(X) the σ-algebra of all Borel subsets of X.
As in [5], p. 50 (see also [8], p. 4, and Section 1.1 of [11]), a map P :

X ×B(X)→ R is called a transition probability if the following two conditions
are satis�ed:

(TP1) For every x ∈ X, the map µx : B(X) → R de�ned by
µx(A) = P (x,A) for every A ∈ B(X) is a probability measure.

(TP2) For every A ∈ B(X), the function gA : X → R de�ned by
gA(x) = P (x,A) for every x ∈ X is Borel measurable.

For every x ∈ X, we denote by δx the Dirac probability measure concen-
trated at x.

Given a transition probability P : X × B(X) → R, for every µ ∈ M(X)
and f ∈ Bb(X), we de�ne the maps νµ : B(X)→ R and gf : X → R as follows:

νµ(A) =

∫
X

P (x,A) dµ(x)

for every A ∈ B(X), and

gf (x) =

∫
X

f(y)P (x)dy

for every x ∈ X (where P (x, dy) stands for dµx(y) and µx is the probability
measure that appears in condition (TP1) in the de�nition of a transition prob-
ability); it is easy to see that νµ is a real-valued signed Borel measure on X (so,
νµ ∈ M(X)) and that gf ∈ Bb(X) for every µ ∈ M(X); therefore, it makes
sense to de�ne the maps T :M(X) →M(X), Tµ = νµ for every µ ∈ M(X),
and S : Bb(X)→ Bb(X), Sf = gf for every f ∈ Bb(X). It is easy to see that T
is a Markov operator, and that (S, T ) is a Markov pair; therefore, T is actually
a regular Markov operator; we say that T and (S, T ) are the (regular) Markov
operator and the Markov pair de�ned (or generated) by P , respectively.

Conversely, given a regular Markov operator T : M(X) → M(X), let
(S, T ) be the Markov pair generated by T , and consider the map P : X ×
B(X) → R de�ned by P (x,A) = Tδx(A) (= S1A(x)) for every x ∈ X and
A ∈ B(X); using Proposition 3.3.1, pp. 49�50 of [5], we obtain that P is a
transition probability; we refer to P as the transition probability de�ned (or
generated) by T (or by (S, T )).

Given a transition probability P and the Markov pair (S, T ) de�ned by
P , we say that P is a Feller transition probability if the operator S has the
property that Sf ∈ Cb(X) whenever f ∈ Cb(X). If the transition probability
P is Feller, the pair (S, T ) is said to be a Markov-Feller pair.
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A family (Pt)t∈[0,+∞) of transition probabilities on (X, d) is called a tran-
sition function if the Chapman-Kolmogorov equations hold true; that is, if

Ps+t(x,A) =

∫
X

Ps(y,A)Pt(x, dy)

for every s ∈ [0,+∞), t ∈ [0,+∞), x ∈ X, and A ∈ B(X).

Let (Pt)t∈[0,+∞) be a transition function on (X, d). As in Section 2.1 of
[11], we say that (Pt)t∈[0,+∞) satis�es the standard measurability assumption
(s.m.a.) if for every A ∈ B(X), the real-valued map (t, x) 7→ Pt(x,A), (t, x) ∈
[0,+∞)×X, is jointly measurable with respect to t and x; that is, the map is
measurable with respect to the Borel σ-algebra B(R) on R and the product σ-
algebra L([0,+∞))⊗B(X), where L([0,+∞)) is the σ-algebra of all Lebesgue
measurable subsets of [0,+∞).

A transition function that satis�es the s.m.a. is said to be standard.

We say that a transition function (Pt)t∈[0,+∞) is a Markov transition func-
tion if the following two conditions are satis�ed:

(MTP1) P0(x,A) = 1A(x) for every x ∈ X and A ∈ B(X).

(MTP2) (Pt)t∈[0,+∞) is a standard transition function.

Let (Pt)t∈[0,+∞) be a transition function, and, for every t ∈ [0,+∞),
let (St, Tt) be the Markov pair de�ned by Pt. It is easy to see that con-
dition (MTP1) in the de�nition of a Markov transition function means that
S0 : Bb(X) → Bb(X) and T0 : M(X) → M(X) are the identity operators of
Bb(X) andM(X), respectively.

We note that a standard transition function may or may not satisfy
condition (MTP1). Most transition functions that we deal with do satisfy
(MTP1); an example of a standard transition function that does not appears in
Example 2.2.3 of [11].

If a transition function (Pt)t∈[0,+∞) has the property that Pt is a Feller
transition probability for every t ∈ [0.+∞), then (Pt)t∈[0,+∞) is called a Feller
transition function.

Let (Tt)t∈[0,+∞) be a semigroup of operators on M(X), Tt : M(X) →
M(X) for every t ∈ [0,+∞).

We say that (Tt)t∈[0,+∞) is a Markov semigroup if Tt is a Markov operator
for every t ∈ [0,+∞) and if T0 is the identity operator on M(X) (that is, if
T0µ = µ for every µ ∈M(X)).

We say that (Tt)t∈[0,+∞) is a regular Markov semigroup if (Tt)t∈[0,+∞) is
a Markov semigroup, and Tt is a regular operator for every t ≥ 0.

The semigroup (Tt)t∈[0,+∞) is said to be jointly measurable if, for every
A ∈ B(X), the map (t, x) 7→ Ttδx(A), (t, x) ∈ [0,+∞)×X, is jointly measurable
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with respect to t and x; that is, if the map is measurable with respect to the
product σ-algebra L([0,+∞))⊗ B(X).

Assume that (Tt)t∈[0,+∞) is a jointly measurable regular Markov semi-
group and, for every t ∈ [0,+∞), let Pt : X × B(X) → R be de�ned by
Pt(x,A) = Ttδx(A) for every (x,A) ∈ X×B(X). Using several arguments that
appear in the proof of Proposition 2.1.2 of [11], we obtain that (Pt)t∈[0,+∞) is a
transition function (note that even though in Proposition 2.1.2 of [11] we con-
sider X to be only a locally compact separable metric space, the arguments in
the proof of the proposition are valid even in the more general situation when
X is a Polish space). Since (Tt)t∈[0,+∞) is jointly measurable, it follows that
(Pt)t∈[0,+∞) satis�es the s.m.a., so (Pt)t∈[0,+∞) is a standard transition func-
tion. Since (Tt)t∈[0,+∞) is a Markov semigroup, it follows that (Pt)t∈[0,+∞) is a
Markov transition function. Thus, given a jointly measurable regular Markov
semigroup, we can associate to it a Markov transition function.

Conversely, given a Markov transition function (Pt)t∈[0,+∞), let
((St, Tt))t∈[0,+∞) be the family of Markov pairs de�ned by (Pt)t∈[0,+∞). Us-
ing Proposition 2.1.1 of [11] (the proposition and its proof in [11] are valid even
if X is Polish rather than a locally compact separable metric space), we obtain
that (Tt)t∈[0,+∞) is a one-parameter semigroup of operators. As pointed out in
Section 1.1 of [11], the operators Tt, t ∈ [0,+∞), are Markov, and using the
equality (1.1.3) of [11], we obtain that Tt, t ∈ [0,+∞), are regular, as well;
taking into consideration that (Pt)t∈[0,+∞) is a Markov transition function, we
obtain that T0 is the identity operator, so (Tt)t∈[0,+∞) is a (regular) Markov
semigroup; �nally, since we assume that (Pt)t∈[0,+∞) satis�es the s.m.a., since
Ttδx(A) = St1A(x) for every t ∈ [0,+∞), x ∈ X, and A ∈ B(X), and us-
ing Proposition 2.1.5 of [11], we obtain that (Tt)t∈[0,+∞) is jointly measurable.
Thus, (Tt)t∈[0,+∞) is a jointly measurable regular Markov semigroup.

Given a Markov transition function (Pt)t∈[0,+∞) and the jointly measur-
able regular Markov semigroup (Tt)t∈[0,+∞) obtained by the procedure outlined
above, we call (Tt)t∈[0,+∞) the Markov semigroup de�ned (or generated) by
(Pt)t∈[0,+∞); since the procedure is reversible, we might also say that
(Pt)t∈[0,+∞) is the (Markov) transition function de�ned (or generated) by
(Tt)t∈[0,+∞).

Let (Pt)t∈[0,+∞) be a Markov transition function and let ((St, Tt))t∈[0,+∞)

be the family of Markov pairs de�ned by (Pt)t∈[0,+∞).

If (Pt)t∈[0,+∞) is a Feller transition function, then we say that (Tt)t∈[0,+∞)

is a Feller (jointly measurable regular)Markov semigroup and, of course, we say
that ((St, Tt))t∈[0,+∞) is the family of Markov-Feller pairs de�ned by
(Pt)t∈[0,+∞); in this case (as pointed out in Introduction for the situation when
X is a locally compact separable metric space), we may, and in this paper we
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often do think of (St)t∈[0,+∞) as a semigroup of positive contractions of Cb(X).

Using the terminology discussed in Section 1.1 of [11] (see also Section 2.1
of [5]), we consider the dual system (M(X), Cb(X)) (with respect to the func-
tion (µ, f) 7→ 〈f, µ〉 for every µ ∈ M(X) and f ∈ Cb(X)), and we call
σ(M(X), Cb(X)) the Cb(X)-weak topology of (or on)M(X).

Set

Γcp =

x ∈ X
∣∣∣∣∣∣∣
(

1
t

(
P-

t∫
0

Tuδx du

))
t∈[0,+∞)

converges in the

Cb(X)-weak topology ofM(X) as t→ +∞

 ,

where P-
t∫

0

Tuδx du, t ∈ (0,+∞), are pointwise integrals (for the de�nition and

basic properties of the pointwise integrals, see Subsection 3.3.1 of [11]; for the
de�nition of Γcp stated here, see Subsection 6.3.2 of [5].

For every x ∈ Γcp, set εx = lim
t→+∞
t>0

Cb(X)-w

1

t

P-

t∫
0

Tuδx du

, where

limCb(X)-w denotes the limit in the Cb(X)-weak topology ofM(X). As pointed
out at the beginning of Subsection 6.3.2 of [5], εx is a probability measure for

every x ∈ Γcp. Taking into consideration that
1

t

P-

t∫
0

Tuδx du

, t ∈ (0,+∞),

x ∈ X, are probability measures, and using Proposition 3.3.7 of [11] and a well-
known result (discussed, for instance, on p. 71 of H�ogn�as and Mukherjea's
monograph [4]), we obtain that Γcp and the probability measures εx, x ∈ Γcp,
de�ned above are precisely the corresponding subset ofX and the corresponding
probability measures discussed in Section 5.1 of [11], respectively, whenever X
is a locally compact separable metric space.

Set

Γcpi =
{
x ∈ Γcp

∣∣εx is an invariant probability measure for (Pt)t∈[0,+∞)

}
.

Note that if (Pt)t∈[0,+∞) is a Feller transition function, then Γcp = Γcpi.
Indeed, assume that (Pt)t∈[0,+∞) is Feller, and let R be the resolvent operator
of (Pt)t∈[0,+∞) (for the de�nition of R, see Section 6.2 of [5]). Using Propo-
sition 6.2.2 of [5], we obtain that R is a regular Markov operator. Further,
since (Pt)t∈[0,+∞) is a Feller transition function, using the Lebesgue dominated
convergence theorem, we obtain that the transition probability de�ned by R is
Feller, as well; therefore, we can use the fact (pointed out in Section 5.3 of [5])
that ΓRcp = ΓRcpi, where the superscript R indicates that we deal with sets of the
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KBBY ergodic decomposition de�ned by R. Finally, using Proposition 6.2.5
and Theorem 6.3.4, both of Chapter 6 of [5], we obtain that Γcp = Γcpi.

For ease of reference, we restate in the next proposition part of Corol-
lary 1.5, p. 52, of Chapter 2 of Engel and Nagel's monograph [1], adapted to
our setting.

Proposition 2.3. Let (Pt)t∈[0,+∞) be a Feller Markov transition func-
tion, and let ((St, Tt))t∈[0,+∞) be the family of Markov-Feller pairs de�ned by
(Pt)t∈[0,+∞). Assume that (St)t∈[0,+∞), thought of as a semigroup of positive
contractions of Cb(X), is strongly continuous, and that the domain D(A) of the

generator A of (St)t∈[0,+∞) is the entire space Cb(X). Then St =
∞∑
k=0

tk

k!
Ak

for every t ∈ [0,+∞), where the convergence of the series
∞∑
k=0

tk

k!
Ak takes place

in the norm topology of the Banach space of all bounded Cb(X)-valued operators
on Cb(X).

Observation. It is the custom to denote by etA (or exp(tA)) the series
∞∑
k=0

tk

k!
Ak, t ∈ [0,+∞).

In the next theorem we obtain a characterization of the elements of
the subset Γcp (= Γcpi) of X de�ned by a Feller Markov transition function
(Pt)t∈[0,+∞) that satis�es the conditions of the last proposition.

Theorem 2.4. Let (Tt)t∈[0,+∞) be a Feller jointly measurable regular
Markov semigroup on M(X), assume that the transition function (Pt)t∈[0,+∞)

de�ned by (Tt)t∈[0,+∞) satis�es the conditions of Proposition 2.3, let
((St, Tt))t∈[0,+∞) be the family of Markov-Feller pairs de�ned by (Pt)t∈[0,+∞),
and let A be the generator of (St)t∈[0,+∞), where (St)t∈[0,+∞) is thought of as a
semigroup on Cb(X). Finally, let x ∈ X.

(a) The following assertions are equivalent:

(i) x ∈ Γcp (= Γcpi).

(ii) For every f ∈ Cb(X), the limit lim
t→+∞

∞∑
k=0

tkAkf(x)

(k + 1)!
exists and

is a real number.

(b) If x ∈ Γcp (that is, if the equivalent assertions of (a) hold true),

then 〈f, εx〉 = lim
t→+∞

∞∑
k=9

tkAkf(x)

(k + 1)!
for every f ∈ Cb(X).
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Proof. (a) Let x ∈ X. Using the de�nition of Γcp, we obtain that x ∈ Γcp

if and only if lim
t→+∞

〈
f,

1

t

P-

t∫
0

Tuδx du

〉 exists and is a real number for

every f ∈ Cb(X).

Note that all the results concerning pointwise integrals discussed in Sub-
section 3.3.1 of [11] hold true also in the more general case when X is Polish
rather than a locally compact separable metric space; therefore, we can use
Proposition 3.3.7 of [11] in order to obtain that, for every t ∈ (0,+∞) and for
every f ∈ Cb(X), we have〈

f,
1

t

P-

t∫
0

Tuδx du

〉 =
1

t

〈
P-

t∫
0

Suf du, δx

〉
=

1

t

t∫
0

Suf(x) du.

Accordingly, x ∈ Γcp if and only if the limit lim
t→+∞

1

t

t∫
0

Suf(x) du exists

and is a real number for every f ∈ Cb(X).

Using Proposition 2.3, we obtain that the series
∞∑
k=0

uk

k!
Akf(x) converges

conditionally to Suf(x) for every u ∈ [0,+∞) and f ∈ Cb(X); thus, we further
obtain that

(2.2)
1

t

t∫
0

Suf(x) du =
1

t

t∫
0

∞∑
k=0

ukAkf(x)

k!
du

for every t ∈ (0,+∞) and f ∈ Cb(X).

Since we assume that the domain of A is the entire space Cb(X), us-
ing Corollary 1.5 of Chapter 2 of Engel and Nagel [1], we obtain that A is a
Cb(X)-valued linear bounded operator on Cb(X). Using Lemma 2.2, we obtain

that the series
∞∑
k=0

t∫
0

ukAkf(x)

k!
du converges and

(2.3)

t∫
0

∞∑
k=0

ukAkf(x)

k!
du =

∞∑
k=0

t∫
0

ukAkf(x)

k!
du

for every t ∈ [0,+∞) and f ∈ Cb(X).
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Using (2.3) in (2.2), we obtain that

1

t

t∫
0

Suf(x) du =
∞∑
k=0

1

t

t∫
0

ukAkf(x)

k!
du =

∞∑
k=0

1

t

(
uk+1

(k + 1)!

∣∣∣∣u=t

u=0

)
Akf(x)

=

∞∑
k=0

1

t
· tk+1

(k + 1)!
Akf(x) =

∞∑
k=0

tkAkf(x)

(k + 1)!

for every t ∈ (0,+∞) and f ∈ Cb(X).

We conclude that x ∈ Γcp if and only if
∞∑
k=0

tkAkf(x)
(k+1)! converges for all

f ∈ Cb(X).

(b) Assume that x ∈ Γcp and that f ∈ Cb(X). Using the de�nition
of εx and the proof of (a) above, we obtain that the limits that appear in the
equalities below do exist, and the equalities hold true.

〈f, εx〉 = lim
t→+∞

〈
f,

1

t

P-

t∫
0

Tuδx du

〉 = lim
t→+∞

1

t

t∫
0

Suf(x) du

= lim
t→+∞

∞∑
k=0

tkAkf(x)

(k + 1)!
. �

Using Theorem 2.4, we will now obtain a characterization of the elements
of Γcpie de�ned by a Feller regular Markov semigroup (Tt)t∈[0,+∞) which satis�es
the conditions of Theorem 2.4.

To this end, let (Tt)t∈[0,+∞) be such a Feller regular Markov semigroup
de�ned on a Polish space (X, d).

Recall (see Subsection 6.3.2 of [5], or the paper [6]) that the de�nition
of Γcpie is: Γcpie = {x ∈ Γcpi | εx is ergodic for (Tt)t∈[0,+∞)}.

Let (Pt)t∈[0,+∞) be the transition function de�ned by (Tt)t∈[0,+∞),
let ((St, Tt))t∈[0,+∞) be the family of Markov pairs de�ned by (Pt)t∈[0,+∞), and
let A be the generator of the semigroup (St)t∈[0,+∞), thought of as a semigroup
of positive contractions of Cb(X).

Theorem 2.5. Let x ∈ Γcpi. Then x ∈ Γcpie if and only if∫
Γcpi

(
lim

t→+∞

∞∑
k=0

tkAkf(y)

(k + 1)!
− lim
t→+∞

∞∑
k=0

tkAkf(x)

(k + 1)!

)2

dεx(y) = 0

for every f ∈ Cb(X).
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Proof. In order to prove the theorem, we will use the resolvent operator R

of (Pt)t∈[0,+∞) de�ned as follows: R :M(X)→M(X), Rµ = P-
+∞∫
0

e−uTuµ du

for every µ ∈M(X) (see [6] or Section 6.2 of [5]).

It is easy to see that, for every µ ∈M(X), the pointwise integral de�ning
Rµ does exist. As pointed out before Proposition 2.3, R is a Feller regular
Markov operator; therefore, R generates an ergodic decomposition of X. We
will denote by ΓRcp, ΓRcpi, ΓRcpie, ε

R
x , x ∈ ΓRcp, and f

∗
R, f ∈ BM(X), the subsets of

X, the Borel measures on X, and the real-valued functions on X that appear
in the ergodic decomposition generated by R.

Using results of [6] (see also Section 6.3 of [5]), we obtain that Γcp = ΓRcp,

Γcpi = ΓRcpi, Γcpie = ΓRcpie, εx = εRx for every x ∈ Γcp, and f∗ = f∗R, where

f∗ : X → R is de�ned by f∗(x) =


∫
X

f(y) dεx(y) if x ∈ Γcp

0 if x /∈ Γcp

for every

f ∈ BM(X).

From [7] (see also Section 5.3 of [5]), we obtain that x ∈ ΓRcpie if and only if

(2.4)

∫
Γcpi

(f∗R(y)− f∗R(x))2 dεRx (y) = 0

for all f ∈ Cb(X) whenever x ∈ ΓRcpi.

Using (b) of Theorem 2.4, we obtain that

(2.5) f∗R(x) = f∗(x) =


lim

t→+∞

∞∑
k=0

tkAkf(x)
(k+1)! if x ∈ Γcp

0 if x /∈ Γcp

for every f ∈ Cb(X).

In view of (2.4) and (2.5), we obtain that the assertion of the theorem
holds true. �

3. EXPONENTIAL ONE-PARAMETER CONVOLUTION

SEMIGROUPS OF PROBABILITY MEASURES

A natural question concerning Theorem 2.4 and Theorem 2.5 of the pre-
vious section is: are there Polish spaces (X, d) and jointly measurable regular
Markov semigroups (Tt)t∈[0,+∞) on M(X) such that the transition function
(Pt)t∈[0,+∞) de�ned by (Tt)t∈[0,+∞) satis�es the conditions of Theorem 2.4 and
Theorem 2.5? Our goal in this section is to exhibit a family of such Markov
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semigroups. Moreover, we will use Theorem 2.4 and Theorem 2.5 in order
to obtain interesting informatom about some of these semigroups. The semi-
groups (Tt)t∈[0,+∞) (or, equivalently, the transition functions (Pt)t∈[0,+∞) de-
�ned by (Tt)t∈[0,+∞)) that we will consider here are generated by exponential
one-parameter convolution semigroups of probability measures.

In order to obtain the results that we have in mind, we need some prepa-
ration.

Let E be a Banach space and let (xt)t∈(0,+∞) be an E-valued function
de�ned on (0,+∞) (note that, as explained in the introductory remarks in
Appendix A of [11], we use here (as we generally do whenever convenient)
subscript notation for functions).

As usual, we say that (xt)t∈(0,+∞) converges as t ↓ 0 if there exists
x∗ ∈ E such that for every ε ∈ R, ε > 0, there exists δ ∈ R, δ > 0, such
that ‖xt − x∗‖ < ε whenever t ∈ (0, δ). In this case, x∗ is called the limit of
(xt)t∈(0,+∞) as t ↓ 0 in the norm topology of E, and we use the notation lim

t↓0
xt

or lim
t→0
t>0

xt for x
∗; if we want to emphasize that the limit is in the norm topology

of E, we write lim
t↓0 (E,‖‖)xt or lim

t→0
t>0

(E,‖‖)xt.

We say that (xt)t∈(0,+∞) has a Cauchy behaviour as t ↓ 0 if for every
ε ∈ R, ε > 0, there exists tε ∈ R, tε > 0, such that ‖xt − xs‖ < ε for every
t ∈ R, 0 < t ≤ tε, and every s ∈ R, 0 < s ≤ tε.

Finally, we say that (xt)t∈(0,+∞) has a sequentially uniformly Cauchy be-
haviour as t ↓ 0 if for every ε ∈ R, ε > 0, there exists tε ∈ R, tε > 0, such that,
for every sequence (tn)n∈N of elements of (0,+∞) that tends to 0, it follows
that ‖xtn − xtk‖ < ε for every n ∈ N and k ∈ N such that tn ≤ tε and tk ≤ tε.

Lemma 3.1. (a) If (xt)t∈(0,+∞) has a Cauchy behaviour as t ↓ 0, then
(xt)t∈(0,+∞) has a sequentially uniformly Cauchy behaviour as t ↓ 0. (b) If
(xt)t∈(0,+∞) has a sequentially uniformly Cauchy behaviour as t ↓ 0, then
(xt)t∈(0,+∞) converges as t ↓ 0 in the norm topology of E.

Proof. (a) Assume that (xt)t∈(0,+∞) has a Cauchy behaviour as t ↓ 0, and
let ε ∈ R, ε > 0. Then there exists tε ∈ (0,+∞) such that ‖xt − xs‖ < ε for
every t ∈ R, 0 < t ≤ tε, and every s ∈ R, 0 < s ≤ tε.

We therefore obtain that for every sequence (tn)n∈N of elements of (0,+∞)
that converges to zero, we have ‖xtn−xtk‖ < ε for every n ∈ N and k ∈ N such
that tn ≤ tε and tk ≤ tε.

Thus, (xt)t∈(0,+∞) has a sequentially uniformly Cauchy behaviour as t ↓ 0.

(b) Assume that (xt)t∈(0,+∞) has a sequentially uniformly Cauchy be-
haviour as t ↓ 0.
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Since the metric de�ned by the norm of a Banach space is complete, it
follows that (xtn)n∈N is a convergent sequence whenever (tn)n∈N is a sequence
of elements of (0,+∞) that converges to zero. Using a well-known result con-
cerning limits of functions, we obtain that, in order to prove that (xt)t∈(0,+∞)

converges in the norm topology of E as t ↓ 0, we only have to prove that given
two sequences (tn)n∈N and (sk)k∈N of elements of (0,+∞) such that both se-
quences (tn)n∈N and (sk)k∈N converge to zero, the limits lim

n→∞
xtn and lim

k→∞
xsk

(which, in view of our preceding discussion, do exist in E) are equal.
To this end, let (tn)n∈N and (sk)k∈N be two sequences of elements of

(0,+∞), assume that both sequences converge to zero, and set y = lim
n→∞

xtn

and z = lim
k→∞

xsk . In order to prove that y = z, we will prove that ‖y − z‖ < ε

for every ε ∈ R, ε > 0.
Thus, let ε ∈ R, ε > 0.
Since we assume that (xt)t∈(0,+∞) has a sequentially uniformly Cauchy

behaviour as t ↓ 0, we obtain that there exists tε ∈ R, tε > 0, such that, for
every sequence (ul)l∈N of elements of (0,+∞) that converges to 0, it follows

that
∥∥∥xul1 − xul2∥∥∥ < ε

2
for every l1 ∈ N and l2 ∈ N such that ul1 ≤ tε and

ul2 ≤ tε.
Let (vl)l∈N be the sequence of elements of (0,+∞) de�ned as follows:

vl =

{
tn if l = 2n− 1 for some n ∈ N
sn if l = 2n for some n ∈ N

for every l ∈ N.
Clearly, (vl)l∈N converges to zero.
Since both sequences (tn)n∈N and (sn)n∈N converge to zero, it follows that

there exists nε ∈ N large enough such that tn ≤ tε and sn ≤ tε for every n ∈ N,
n ≥ nε.

It follows that
∥∥∥xvl1 − xvl2∥∥∥ < ε

2
for every l1 ∈ N, l1 ≥ 2nε−1, and l2 ∈ N,

l2 ≥ 2nε − 1. In particular,
∥∥xv2n−1 − xv2n

∥∥ < ε

2
for every n ∈ N, n ≥ nε.

We obtain that

‖y − z‖ = lim
n→∞

‖xtn − xsn‖ = lim
n→∞

∥∥xv2n−1 − xv2n
∥∥ ≤ ε

2
< ε.

We have therefore proved that y = z.
Accordingly, (xt)t∈(0,+∞) converges as t↓0 in the norm topology of E. �

Proposition 3.2. Let (xt)t∈(0,+∞) be an E-valued function de�ned on
(0,+∞). The following assertions are equivalent:

(a) lim
t↓0 (E,‖‖)xt does exist.

(b) (xt)t∈(0,+∞) has a Cauchy behaviour as t ↓ 0.
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Proof. (a) ⇒ (b). Assume that the limit of (xt)t∈(0,+∞) exists as t ↓ 0 in
the norm topology of E, and let x∗ be this limit.

Let ε ∈ R, ε > 0. Since x∗ = lim
t↓0 (E,‖‖)xt, there exists tε ∈ R, tε > 0 such

that ‖xt − x∗‖ <
ε

2
for every t ∈ (0, tε]. Accordingly,

‖xt − xs‖ ≤ ‖xt − x∗‖+ ‖x∗ − xs‖ <
ε

2
+
ε

2
= ε

for every t ∈ (0, tε] and s ∈ (0, tε].
We have therefore proved that for every ε ∈ R, ε > 0, there exists tε ∈ R,

tε > 0, such that ‖xt − xs‖ < ε for every t ∈ (0, tε] and s ∈ (0, tε]. Thus,
(xt)t∈(0,+∞) has a Cauchy behaviour as t ↓ 0.

(b) ⇒ (a). Using Lemma 3.1, we obtain that the implication holds
true. �

If E is a Banach space, we will use the notation L(E) for the Banach
space of all linear bounded operators Q : E → E, the norm on L(E) being the
usual operator norm.

If (F, ‖ ‖) is a Banach space, A is a set of real numbers that contains the
open interval (0,+∞), and f : A → F is a function, and if the limit of f(t)
as t ↓ 0 does exist in the norm topology of F , we will often use the notation
lim
t→0
t>0

(F‖ ‖)f(t) (or lim
t↓0 (F,‖ ‖)f(t)) in order to emphasize that the limit is taken

with respect to the norm on F . Of course, at times, F could be the space L(E)
discussed in the previous paragraph.

Proposition 3.3. Let (X, d) be a Polish space, let (Pt)t∈[0,+∞) be a Feller
Markov transition function on (X, d), and let ((St, Tt))t∈[0,+∞) be the family of
Markov-Feller pairs de�ned by (Pt)t∈[0,+∞). Let ‖ ‖L(M(X)) and IdM(X) be the
operator norm on L(M(X)) and the identity operator on M(X), respectively.

If lim
t→0
t>0

(L(M(X)),‖ ‖L(M(X)))
Tt − IdM(X)

t
does exist, then, for every f ∈ Cb(X),

the limit lim
t→0
t>0

(Cb(X),‖ ‖)
Stf − f

t
does exist, as well, where, as usual, ‖ ‖ is the

uniform (sup) norm on Cb(X).

Proof. Clearly, the proposition is true whenever f is the constant zero

function, f ∈ Cb(X). Thus, we have to prove that lim
t→0
t>0

(Cb(X),‖ ‖)
Stf − f

t
does

exist for every f ∈ Cb(X), f 6= 0.
To this end, let f ∈ Cb(X), f 6= 0.

Set gt =
Stf − f

t
and Qt =

Tt − IdM(X)

t
for every t ∈ (0,+∞).
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We have to prove that lim
t→0
t>0

(Cb(X),‖ ‖)gt does exist. Using Proposition 3.2,

we obtain that it is enough to prove that (gt)t∈(0,+∞) has a Cauchy behaviour
as t ↓ 0 with respect to the sup norm on Cb(X).

To this end, let ε ∈ R, ε > 0.

Since we assume that lim
t→0
t>0

(L(M(X)),‖ ‖L(M(X)))Qt does exist, using

Proposition 3.2 again, we obtain that (Qt)t∈(0,+∞) has a Cauchy behaviour
as t ↓ 0 with respect to the uniform norm operator topology of L(M(X)).

Thus, there exists tε ∈ R, tε > 0, such that ‖Qt −Qu‖ <
ε

2‖f‖
for every t ∈ R,

0 < t < tε, and u ∈ R, 0 < u < tε.

It follows that

|gt(x)− gu(x)| =
∣∣∣∣Stf(x)− f(x)

t
− Suf(x)− f(x)

u

∣∣∣∣
=

∣∣∣∣〈Stf − ft
, δx

〉
−
〈
Suf − f

u
, δx

〉∣∣∣∣ =

∣∣∣∣〈f, Ttδx − δxt

〉
−
〈
f,
Tuδx − δx

u

〉∣∣∣∣
= |〈f, (Qt −Qu)δx〉| ≤ ‖f‖‖Qt −Qu‖‖δx‖ < ‖f‖ ·

ε

2‖f‖
=
ε

2
for every x ∈ X, t ∈ R, 0 < t ≤ tε, and u ∈ R, 0 < u ≤ tε.

Accordingly, ‖gt − gu‖ ≤
ε

2
< ε for every t ∈ R, 0 < t ≤ tε and u ∈ R,

0 < u ≤ tε.
We obtain that (gt)t∈(0,+∞) has a Cauchy behaviour as t ↓ 0 with respect

to the sup norm on Cb(X) because we have proved that for every ε ∈ R, ε > 0,
there exists tε ∈ R, tε > 0, such that ‖gt − gu‖ < ε for every t ∈ (0, tε] and
u ∈ (0, tε]. �

We will now introduce the family of transition functions that, as men-
tioned at the beginning of this section, satisfy the conditions of Theorem 2.4
and Theorem 2.5.

To this end, let (H, ·, d) be a locally compact separable metric semigroup,
assume that H has a neutral element, and let e be the neutral element of H
(thus, for the family of examples that we have in mind, the role of (X, d) is
played by (H, d)).

As usual, we make the convention that ν0 = δe for every ν ∈ M(H) (see
the discussion preceding Proposition B.2.8 of Appendix B of [11], and we use the
notation νk = ν ∗ ν ∗ · · · ∗ ν︸ ︷︷ ︸

k times

whenever ν ∈ M(H), where ∗ is the operation of

convolution onM(H).
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Let µ ∈M(H) be a probability measure and set

µt = e−t exp(tµ) = e−t
∞∑
k=0

tk

k!
µk

for every t ∈ [0,+∞). As discussed in Section B.3 of Appendix B of [11],
the family (µt)t∈[0,+∞) is a one-parameter convolution semigroup of probabil-
ity measures; we call (µt)t∈[0,+∞) the exponential one-parameter convolution
semigroup of probability measures de�ned by µ.

For every t ∈ [0,+∞), let Pt and (St, Tt) be the transition probability and
the Markov pair de�ned by µt, respectively (for details, see Example 1.1.16 and
the discussion preceding Proposition 2.2.10, both of [11]).

By Proposition 2.2.10 of [11], (Pt)t∈[0,+∞) is a transition function and
((St, Tt))t∈[0,+∞) is the family of Markov pairs de�ned by (Pt)t∈[0,+∞). More-
over, using Example 1.1.16 of [11], we obtain that (Pt)t∈[0,+∞) is a Feller tran-
sition function.

Our goal is to prove that (Pt)t∈[0,+∞) satis�es the conditions of Theo-
rem 2.4 and Theorem 2.5. To this end, we need some preparation.

We start with a lemma in which we extend the calculus formula

d

dt

∣∣∣∣
t=0

(e−teta) = a− 1, a ∈ R,

to the case when a is a probability measure inM(H).

In the proof of the lemma, we will deal with products of series of real
numbers and series of elements of a Banach algebra with unit (in our case, the
Banach algebra is M(H) and the unit of M(H) is δe, where e is the neutral
element of H). Even though this type of �mixed� products was not discussed
explicitly in [11], we can use the results of Section B.2 of Appendix B of [11]
to study the products. More precisely, taking into consideration that, for every
r ∈ R and µ ∈ M(H), the product rµ can be thought of as the product

(rδe) ∗ µ, we obtain that, given a series
∞∑
n=0

rn of real numbers and another

series
∞∑
n=0

µn of elements of M(H), for the purpose of multiplying the two

series, we can think of the series
∞∑
n=0

rn as the series
∞∑
n=0

(rnδe) of elements of

M(H); thus, we can apply various results concerning the multiplication of two

series of elements ofM(H) to the two series
∞∑
n=0

rn and
∞∑
n=0

µn (for instance, we

can use Theorem B.2.7 of Appendix B of [11] applied to
∞∑
n=0

(rnδe) and
∞∑
n=0

µn
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in order to obtain that

( ∞∑
n=0

rn

)( ∞∑
n=0

µn

)
=
∞∑
n=0

(
n∑
k=0

rkµn−k

)
).

Lemma 3.4. If µ∈M(H) is a probability measure, then lim
t→0
t>0

e−texp(tµ)−δe
t

exists and is equal to µ − δe, where the limit is taken in the norm topology of
M(H).

Proof. In view of the comments made before the lemma concerning prod-
ucts of series of real numbers and series of elements ofM(H), we obtain that
all the series that appear in the following equalities do converge, the limits that
appear do exist, and the equalities hold true for t > 0:

e−t exp(tµ)− δe
t

=

( ∞∑
k=0

(−t)k
k!

)( ∞∑
k=0

tk

k!µ
k

)
− δe

t

= lim
n→+∞

(
n∑
k=0

(−t)k
k!

)(
n∑
k=0

tk

k!µ
k

)
− δe

t
.

Since (
n∑
k=0

(−t)k

k!

)(
n∑
k=0

tk

k!
µk

)
− δe

=

(
1− t+

t2

2!
− t3

3!
+ · · ·+ (−1)ntn

n!

)
×
(
δe + tµ+

t2

2!
µ2 +

t3

3!
µ3 + · · ·+ tn

n!
µn
)
− δe

= δe − tδe + tµ+

 n∑
k=2

k∑
j=0

(−1)j
tj

j!
· tk−j

(k − j)!
µk−j

− δe
= t

−δe + µ+

n∑
k=2

k∑
j=0

(−1)j
tk−1

j!(k − j)!
µk−j


for every t ∈ R, t > 0, and every n ∈ N ∪ {0}, it follows that

(3.1)
e−t exp(tµ)− δe

t
= lim

n→+∞

t

(
−δe + µ+

n∑
k=2

k∑
j=0

(−1)j
tk−1

j!(k − j)!
µk−j

)
t

for every t ∈ (0,+∞).
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Since lim
n→+∞

δe − tδe + tµ+
n∑
k=2

k∑
j=0

(−1)j
tk

j!(k − j)!
µk−j

 does exist (the

limit is equal to e−t exp(tµ)), it follows that, under the assumption that t 6= 0,

lim
n→+∞

−δe + µ+

n∑
k=2

k∑
j=0

(−1)j
tk−1

j!(k − j)!
µk−j


does exist, as well, and

lim
n→+∞

t

−δe + µ+
n∑
k=2

k∑
j=0

(−1)j
tk−1

j!(k − j)!
µk−j



(3.2) = t lim
n→+∞

−δe + µ+
n∑
k=2

k∑
j=0

(−1)j
tk−1

j!(k − j)!
µk−j

 .

Using (3.2), we obtain that (3.1) becomes

(3.3)
e−t exp(tµ)− δe

t
= lim

n→+∞

−δe + µ+

n∑
k=2

k∑
j=0

(−1)j
tk−1

j!(k − j)!
µk−j


for every t ∈ (0,+∞).

Let η : N ∪ {0} →M(H) be de�ned as follows:

η(n) =


0 if n = 0 or 1
n∑
k=2

k∑
j=0

(−1)j
tk−2

j!(k − j)!
µk−j if n ≥ 2

.

Now note that, using (3.3), we obtain that lim
n→+∞

(−δe + µ + tη(n)) ex-

ists (and is equal to
e−t exp(tµ)− δe

t
) for every t ∈ (0,+∞). Therefore, we

further obtain that, for t ∈ (0,+∞), the limit lim
n→+∞

η(n) does exist. Set

ν = lim
n→+∞

η(n).

It follows that lim
t→0
t>0

e−t exp(tµ)− δe
t

does exist and is equal to −δe + µ

because −δe + µ +
n∑
k=2

k∑
j=0

(−1)j
tk−1

j!(k − j)!
µk−j = −δe + µ + tη(n) for every

n ∈ N, n ≥ 2, and t ∈ (0,+∞), and because lim
t→0
t>0

lim
n→+∞

(−δe + µ + tη(n)) does

exist and is equal to −δe + µ. �
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Theorem 3.5. Let µ ∈ M(H) be a probability measure, let (µt)t∈[0,+∞)

be the exponential one-parameter convolution semigroup of probability mea-
sures de�ned by µ, let (Pt)t∈[0,+∞) be the (Feller) transition function de�ned
by (µt)t∈[0,+∞), and let ((St, Tt))t∈[0,+∞) be the family of Markov-Feller pairs

de�ned by (Pt)t∈[0,+∞). Then lim
t→0
t>0

Tt − IdM(H)

t
does exist in the norm topology

of L(M(H)).

Proof. Let T : M(H) → M(H) be the convolution operator de�ned by
µ; thus, T acts as follows: Tν = µ ∗ ν for every ν ∈ M(H) (for details on
convolution operators, see Example 1.1.16 of [11] and the paper [9]).

In order to prove the theorem, we will actually prove a bit more; namely,

we will show that lim
t→0
t>0

Tt − IdM(H)

t
does exist and is equal to T − IdM(H) in the

norm topology of L(M(H)). Thus, it is enough to prove that for every ε ∈ R,

ε>0, there exists tε∈ (0,+∞) such that

∥∥∥∥(Tt−IdM(H)

t
−
(
T−IdM(H)

))
ν

∥∥∥∥< ε

2
for every t ∈ (0, tε) and every probability measure ν ∈M(H).

To this end, let ε ∈ R, ε > 0.

Using Lemma 3.4, we obtain that there exists tε ∈ R, tε > 0, such that∥∥∥∥e−t exp(tµ)− δe
t

− (µ− δe)

∥∥∥∥ < ε

2
for every t ∈ R, t ∈ (0, tε).

Taking into consideration thatM(H) is a Banach algebra (see Section B.2
of Appendix B in [11]), we obtain that∥∥∥∥(Tt − IdM(H)

t
− (T − IdM(H))

)
ν

∥∥∥∥ =

∥∥∥∥Ttν − νt
− (Tν − ν)

∥∥∥∥
=

∥∥∥∥µt ∗ ν − νt
− (µ ∗ ν − ν)

∥∥∥∥ =

∥∥∥∥(µt − δet
− (µ− δe)

)
∗ ν
∥∥∥∥

≤
∥∥∥∥µt − δet

− (µ− δe)

∥∥∥∥ ‖ν‖ =

∥∥∥∥e−t exp(tµ)− δe
t

− (µ− δe)

∥∥∥∥ < ε

2

for every t ∈ (0, tε) and every probability measure ν ∈M(H). �

In view of our discussion so far, we are now in a position to prove that, in
our setting (described after Proposition 3.3), a transition function de�ned by an
exponential one-parameter convolution semigroup of probabilities generated by
a probability measure satis�es the conditions of Theorem 2.4 and Theorem 2.5.
We discuss the details in the next theorem.
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Theorem 3.6. Let µ ∈M(H), µ ≥ 0, ‖µ‖ = 1, let (µt)t∈[0,+∞) be the ex-
ponential one-parameter convolution semigroup of probability measures de�ned
by µ, and let (Pt)t∈[0,+∞) and ((St, Tt))t∈[0,+∞) be the Feller transition func-
tion and the family of Markov-Feller pairs de�ned by (µt)t∈[0,+∞), respectively.
Then:

(a) The semigroup (St)t∈[0,+∞) thought of as a semigroup of positive con-
tractions of Cb(H) is strongly continuous and has a generator, say A.

(b) The domain D(A) of A is the entire space Cb(H).

Proof. Note that it is enough to prove that, for every f ∈ Cb(H), the

limit lim
t→0
t>0

Stf − f
t

exists in the norm topology of Cb(H), because if the lim-

its lim
t→0
t>0

Stf − f
t

, f ∈ Cb(H), do exist, then, for every f ∈ Cb(H), the map

t 7→ Stf , t ∈ [0,+∞), is continuous, and the domain D(A) of the generator A
of (St)t∈[0,+∞) is the space Cb(H), so both (a) and (b) of the theorem are true.

Thus, let Pµ and (Sµ, Tµ) be the (Feller) transition probability and the
Markov-Feller pair de�ned by µ, respectively (for details on the de�nition and
the various properties of Pµ and (Sµ, Tµ), see [9] and Example 1.1.16 of [11]).

Clearly, the proof of the theorem will be completed as soon as we show
that Sµf − f is the limit, in the norm topology of Cb(H), of the Cb(H)-valued

function t 7→ Stf − f
t

, t ∈ (0,+∞), as t→ 0, t > 0, for every f ∈ Cb(H).

To this end, let f ∈ Cb(H), and note that we may (and therefore we do)
assume that f 6= 0.

Now let ε ∈ R, ε > 0.

Using the proof of Theorem 3.5, we obtain that lim
t→0
t>0

Tt − IdM(H)

t
does exist

and is equal to Tµ − IdM(H); therefore, there exists tε ∈ R, tε > 0, such that∥∥∥∥Tt − IdM(H)

t
− (Tµ − IdM(H))

∥∥∥∥
L(M(H))

<
ε

2‖f‖
for every t ∈ (0, tε), where

‖ ‖L(M(H)) is the norm of the Banach space L(M(H)) (the uniform operator
norm).

In view of the de�nition of tε, we obtain that∥∥∥∥(Tt − IdM(H)

t

)
(ν)− (Tµ − IdM(H))(ν)

∥∥∥∥ < ε

2‖f‖
for every t ∈ (0, tε) and for every probability measure ν ∈M(H). In particular,
for every x ∈ H, if we set ν = δx, we obtain that∥∥∥∥Ttδx − δxt

− (Tµδx − δx)

∥∥∥∥ < ε

2‖f‖



25 On an ergodic decomposition de�ned in terms of certain generators 41

for every t ∈ (0, tε).
It follows that∣∣∣∣Stf(x)− f(x)

t
− (Sµf(x)− f(x))

∣∣∣∣ =

∣∣∣∣〈Stf − ft
− (Sµf − f), δx

〉∣∣∣∣
=

∣∣∣∣〈f, Ttδx − δxt
− (Tµδx − δx)

〉∣∣∣∣
≤ ‖f‖ ·

∥∥∥∥Ttδx − δxt
− (Tµδx − δx)

∥∥∥∥ < ‖f‖ · ε

2‖f‖
=
ε

2

for every x ∈ H and t ∈ (0, tε).

Thus, we obtain that sup
x∈H

∣∣∣∣Stf(x)− f(x)

t
− (Sµf(x)− f(x))

∣∣∣∣ ≤ ε

2
< ε for

every t ∈ (0, tε).
Accordingly,

(3.4)

∥∥∥∥Stf − ft
− (Sµf − f)

∥∥∥∥ ≤ ε

2
< ε

for every t ∈ (0, tε).
Since for every ε ∈ R, ε > 0, there exists tε ∈ R, tε > 0, such that (3.4)

holds true for every t ∈ (0, tε), it follows that lim
t→0
t>0

Stf − f
t

does exist in Cb(H)

and is equal to Sµf − f . �

Note that in Theorem 3.6 we extend and strengthen (i) of part A of
Theorem 4.2.8 (the Hunt representation theorem) on pp. 268�269 of Heyer's
monograph [3] (or of any of the following results: Theorem 4.1.14, pp. 257�258
of [3], Theorem 4.1.16, p. 259 of [3], and Theorem 4.2.1, p. 260 of [3]) in
the case of the exponential one-parameter convolution semigroup (µt)t∈[0,+∞)

of probabilities de�ned by a probability measure. Indeed, Theorem 3.6 is an
extension of the above-mentioned results of Heyer's monograph [3] because
we do not assume in Theorem 3.6 that H is a Lie group (if H is actually a
Lie group, it is obvious that (µt)t∈[0,+∞) satis�es the conditions of the above-
mentioned results of [3]). Also, Theoreem 3.6 is a strengthening of the results
mentioned above of Heyer's monograph [3] for the one-parameter semigroup
(µt)t∈[0,+∞) because if (St)t∈[0,+∞) is the semigroup of positive contractions
of Cb(H) considered in Theorem 3.6, then in the theorem we prove that the
domain of the generator of (St)t∈[0,+∞) is the entire space Cb(H).

We will now discuss an application of the results obtained so far in the case
in which we deal with a certain type of exponential one-parameter convolution
semigroup of probabilities de�ned by a probability measure, and we assume
that H (the semigroup on which the probability measures that make up the
convolution semigroup are de�ned) is a compact metric group.
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Theorem 3.7. Let (H, ·, d) be a compact metric group, and let e be the
neutral element of H. Let λ be the Haar probability measure on H, and let

µ ∈ M(H) be a probability measure such that
∞⋃
n=0

(supp (µn)) = H. As in

Example 1.1.16 of [11], let (Sµ, Tµ) be the Markov-Feller pair de�ned by µ.
The following two assertions hold true for every real-valued continuous bounded
function f de�ned on H:

(a) The series
∞∑
k=0

tk(Sµ − IdC(H))
kf(x)

(k + 1)!
converges for every t ∈ [0,+∞)

and x ∈ H, where C(H) (= C0(H) = Cb(H)) is the Banach space of all real-
valued bounded continuous functions de�ned on H and IdC(H) is, of course, the
identity operator on C(H).

(b) The limit

lim
t→+∞

∞∑
k=0

tk(Sµ − IdC(H))
kf(x)

(k + 1)!

(or lim
t→+∞

∞∑
k=0

tk((µ− δe)k ∗ f)(x)

(k + 1)!
, where we use the notation ν ∗f for the func-

tion ν ∗ f : H → R de�ned by (ν ∗ f)(x) =

∫
H

f(zx) dν(z) for every ν ∈

M(H)) exists for every x ∈ H, is independent of x, and is equal to 〈f, λ〉
(=

∫
H

f(y) dλ(y)).

Proof. (a) Let x ∈ H, t ∈ [0,+∞), and f ∈ C(H).

In order to prove that the series
∞∑
k=0

tk(Sµ − IdC(H))
kf(x)

(k + 1)!
converges,

we note that the series converges absolutely; that is, the series
∞∑
k=0

∣∣∣∣∣ tk(Sµ − IdC(H))
kf(x)

(k + 1)!

∣∣∣∣∣ converges. Indeed,
∞∑
k=0

∣∣∣∣∣ tk(Sµ − IdC(H))
kf(x)

(k + 1)!

∣∣∣∣∣ ≤
∞∑
k=0

tk
∥∥∥(Sµ − IdC(H)

)k
f
∥∥∥

(k + 1)!

≤
∞∑
k=0

tk
∥∥(Sµ − IdC(H))

k
∥∥
L(C(H))

‖f‖
(k + 1)!

≤
∞∑
k=0

tk
∥∥Sµ − IdC(H)

∥∥k
L(C(H))

‖f‖
(k + 1)!

≤
∞∑
k=0

tk
∥∥Sµ − IdC(H)

∥∥k
L(C(H))

‖f‖
k!

= et‖Sµ−IdC(H)‖L(C(H))‖f‖ < +∞,
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where ‖ ‖ is the uniform (sup) norm of C(H), of course.

Thus,
∞∑
k=0

∣∣∣∣∣ tk(Sµ − IdC(H))
kf(x)

(k + 1)!

∣∣∣∣∣ is a convergent series.

(b) Let (µt)t∈[0,+∞) be the exponential one-parameter convolution semi-
group of probability measures de�ned by µ, let (Pt)t∈[0,+∞) be the (Feller) tran-
sition function de�ned by (µt)t∈[0,+∞), and let ((St, Tt))t∈[0,+∞) be the family
of Markov-Feller pairs de�ned by (Pt)t∈[0,+∞).

By Theorem 3.6, the semigroup (St)t∈[0,+∞), thought of as a semigroup
of positive contractions of C(H), has a generator, that we denote by A, and
the domain of A is the entire space C(H).

Let Pµ be the transition probability generated by µ, and let (Sµ, Tµ) be the
Markov-Feller pair generated by Pµ (for the de�nitions of Pµ and of (Sµ, Tµ),
see Example 1.1.16 of [11], or the paper [9]).

Using the proof of Theorem 3.6, we obtain that A = Sµ − IdC(H).

Since H is compact, the sequence (µn)n∈N is obviously tight; therefore,
using Proposition 4.2 of [9], we obtain that µ is an equicontinuous measure.

Using Proposition 2.2.15 of Subsection 2.2.3 of [11], we obtain that
(Pt)t∈[0,+∞) is a C0(H) (= C(H))-equicontinuous transition function.

SinceH is a group, it follows thatH has left zeroids (actually, any element

of H is a left zeroid because H =
⋂
a∈H

Ha; for a discussion of zeroids in semi-

groups, see Section A.1 of Appendix A of [11]); since
∞⋃
n=0

(supp (µn)) = H, it fol-

lows that all the orbits of (Pt)t∈[0,+∞) are dense inH. Taking into consideration
that the Haar probability measure λ is an invariant probability of (Pt)t∈[0,+∞),
using Example 7.2.15 of [11], we obtain that (Pt)t∈[0,+∞) is uniquely ergodic
and λ is the unique invariant probability of (Pt)t∈[0,+∞).

Using again Example 7.2.15 of [11], we obtain that Γcp = Γcpie = H.

In view of Theorem 2.4, we obtain that lim
t→+∞

∞∑
k=0

tk(Sµ − IdC(H))
kf(x)

(k + 1)!

exists for every x ∈ H and every f ∈ C(H), and is equal to 〈f, λ〉 (so, the limit
is independent of x). �
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