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Abstract

Radiant spherical suspensions have an ε-periodic distribution in a three dimensional incom-
pressible viscous fluid governed by the Stokes-Boussinesq system. We study the border case when
the radius of the spheres is of order ε3 and the ratio of the solid/fluid conductivities is of order ε−6.
We apply a homogenization procedure by adapting the energy method introduced by [1] and devel-
oped by [2]-[7]. The macroscopic behavior is described by a nonlocal law of Brinkman-Boussinesq
type and two coupled heat equations, where the radiation and a certain capacity of the vanishing
suspensions appear. This result completes those obtained for the thermal flow when the volume of
the solid matrix is not vanishing as ε → 0 (see [8]-[9]).

1 Preliminaries

Let Ω ⊂ R3 be a bounded open set and let

Y :=

(

−
1

2
,+

1

2

)3

.

Y k
ε := εk + εY, k ∈ Z3.

Zε := {k ∈ Z3, Y k
ε ⊂ Ω}

The reunion of the suspensions is defined by

Tε := ∪k∈ZεB(εk, rε),

where 0 < rε << ε and B(εk, rε) is the ball of radius rε centered at εk, k ∈ Zε. The fluid domain is
given by

Ωε = Ω \ Tε.

Let e(3) be the last vector of the canonical basis of R3, n the normal on ∂Ωε in the outward direction
and [·]ε the jump across the interface ∂Tε. For a > 0 (the so-called Rayleigh number), f ∈ L2(Ω),
g ∈ C(Ω) and b > 0, where b(ε/rε)

3 stands for the ratio of the solid/fluid conductivities, we consider
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the problem corresponding to the non-dimensional Stokes-Boussinesq system governing the thermal
flow of an ε-periodic distribution suspension of solid spheres:
To find (uε, pε, θε) ∈ H1(Ωε;R

3)× L2(Ωε)×H
1(Ω), solution of

divuε = 0 in Ωε, (1)

−∆uε +∇pε = aθεe(3) in Ωε, (2)

−∆θε + uε∇θε = f in Ωε, (3)

−∆θε = g in Tε, (4)

[θε]ε = 0 on ∂Tε, (5)

∂θε

∂n
= b(ε/rε)

3∂θ
ε

∂n
on ∂Tε, (6)

uε = 0 on ∂Ωε, (7)

θε = 0 on ∂Ω. (8)

Introducing
Vε := { v ∈ H

1
0 (Ωε;R

3), div v = 0},

the variational formulation of (1)-(8) reads:

∀(v, q) ∈ Vε × L
2(Ωε),

∫

Ωε

∇uε · ∇v dx = a

∫

Ωε

θεv3 dx
∫

Ωε

q divuε dx = 0

∀ϕ ∈ H1
0 (Ωε),

∫

Ωε

∇θε∇ϕ dx + b(ε/rε)
3

∫

Tε

∇θε∇ϕ dx

+

∫

Ωε

uεϕ∇θε dx =

∫

Ωε

fϕ+ b(ε/rε)
3

∫

Tε

gϕdx.

We define Fε ∈ H
−1(Ω) by

∀ϕ ∈ H1
0 (Ω), Fε(ϕ) :=

∫

Ωε

fϕ dx+ b(ε/rε)
3

∫

Tε

gϕdx.

Then, for γ > 0 (we shall choose a suitable value for this parameter later), we can present the
variational formulation of the problem (1)–(8):

To find (uε, θε) ∈ Vε ×H
1
0 (Ω) such that

〈G(uε, θε), (v, ϕ)〉 = Fε(ϕ) for any (v, ϕ) ∈ Vε ×H
1
0 (Ω), (9)

where the mapping G : Vε ×H
1
0 (Ω)→ V ′ε ×H

−1(Ω) is defined by

〈G(u, θ), (v, ϕ)〉 = γ

∫

Ωε

∇u∇v dx − γ a

∫

Ωε

θv3 dx

+

∫

Ωε

∇θ∇ϕ dx +

∫

Ωε

uϕ∇θ dx + b(ε/rε)
3

∫

Tε

∇θ∇ϕ dx.

In order to prove the existence theorem for problem (9), we make use of the following result of Gossez:
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Theorem 1.1 Let X be a reflexive Banach space and G : X → X ′ a continuous mapping between the
corresponding weak topologies. If

〈Gϕ,ϕ〉

|ϕ|X
→∞ as |ϕ|X →∞

then G is a surjection.

Acting as in the proof of Theorem 5.2.2 [8] Ch 1, Sec. 5, we find that the existence of the weak solutions
of problem (9) is assured if γ is chosen sufficiently small. Moreover, if (uε, θε) is a solution of problem
(9), then, by using the weak maximum principle, we obtain that θε ∈ L∞(Ω), (see Theorem 3.4 [8]
Ch 2, Sec. 3). We do not have a uniqueness result, except if we assume that a > 0 is small enough.

2 Basic inequalities

Lemma 2.1 For every 0 < r1 < r2, consider:

C(r1, r2) := {x ∈ R3, r1 < |x| < r2}.

Then, if u ∈ H1(C(r1, r2)), the following estimate holds true:

|∇u|2C(r1,r2) ≥
4πr1r2
r2 − r1

∣

∣

∣

∣

∣

∫

−
Sr2

u dσ −

∫

−
Sr1

u dσ

∣

∣

∣

∣

∣

2

, (10)

where
∫

−
Sr
· dσ := 1

4πr2

∫

Sr
· dσ.

Lemma 2.2 There exists a positive constant C > 0 such that, for any R > 0, α ∈ (0, 1) and u ∈
H1(B(0, R)), the following inequality holds:

∫

B(0,R)
|u−

∫

−
SαR

u dσ|2 dx ≤ C
R2

α
|∇u|2B(0,R). (11)

We denote the domain confined between the spheres of radii a < b by

C(a, b) := {x ∈ R3, a < |x| < b}

and correspondingly
Ck(a, b) := εk + C(a, b),

From now on, we consider Rε to be a radius satisfying

rε << Rε << ε (12)

and we use the following notations:

Cε := ∪k∈ZεC
k(rε, Rε).
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Skrε = ∂B(εk, rε), Srε := ∪k∈ZεS
k
rε ,

SkRε = ∂B(εk,Rε), SRε := ∪k∈ZεS
k
Rε ,

For any r ∈ (0, ε), we define Gr : H
1
0 (Ω)→ L2(Ω) by

Gr(θ)(x, t) =
∑

k∈Zε

(

∫

−
Skr

θ(y, t) dσy

)

1Y kε (x). (13)

Lemma 2.3 For every θ ∈ H1
0 (Ω) we have

|θ −GRε(θ)|L2(∪k∈Zε
Y kε )

≤ C

(

ε3

Rε

)1/2

|∇θ|L2(Ω) (14)

|θ −Grε(θ)|L2(Tε) ≤ Crε|∇θ|L2(Tε) (15)

|GRε(θ)−Grε(θ)|L2(Ω) ≤ C

(

ε3

rε

)1/2

|∇θ|L2(Cε). (16)

Denoting
∫

−Tε
· dx = 1

|Tε|

∫

Tε
·dx, we also have

|GRε(θ)|
2
L2(Ω) =

∫

−
Tε

|GRε(θ)|
2dx and |Grε(θ)|

2
L2(Ω)=

∫

−
Tε

|Grε(θ)|
2dx. (17)

Proposition 2.4 For any θ ∈ H1
0 (Ω) we have:
∫

−
Tε

|θ|2 dx ≤ Cmax (1,
ε3

rε
)|∇θ|2L2(Ω), (18)

Remark 2.5 Using the Mean Value Theorem, we easily find that

|Grε(ϕ)− ϕ|L∞(Cε∪Dε) ≤ 2Rε|∇ϕ|L∞(Ω), ∀ϕ ∈ D(Ω). (19)

3 A priori estimates

In the sequel, we denote

γε :=
rε
ε3

(20)

and we assume that
lim
ε→0

γε = γ ∈]0,+∞[. (21)

Proposition 3.1 We have
Fε ⇀ F in H−1(Ω), (22)

where F ∈ H−1(Ω) is given by

F(ϕ) :=

∫

Ω
fϕ dx+

4πb

3

∫

Ω
gϕ dx (23)
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Proposition 3.2 If (uε, θε) ∈ Vε × H1
0 (Ω) is a solution of the problem (9), and if ûε stands for uε

continued with zero to Ω, then we have

ûε and θε are bounded in H1
0 (Ω). (24)

Moreover,
|∇θε|2Ωε + b(ε/rε)

3|∇θε|2Tε ≤ C. (25)

Proposition 3.3 There exist u ∈ H1
0 (Ω;R

3), θ ∈ H1
0 (Ω) and τ ∈ L

2(Ω) such that

ûε ⇀ u in H1
0 (Ω;R

3), (26)

div u = 0 in Ω (27)

θε ⇀ θ in H1
0 (Ω), (28)

GRε(θ
ε) → θ in L2(Ω), (29)

Grε(θ
ε) ⇀ τ in L2(Ω). (30)

Moreover,

lim
ε→0

∫

−
Tε

|θε −Grε(θ
ε)|2 dx = 0 (31)

4 The two macroscopic heat equations

The aim of this section is to pass to the limit as ε → 0 in the variational formulation of the heat
equations:

∀Φ ∈ H1
0 (Ω),

∫

Ωε

∇θε∇Φ dx+ b(ε/rε)
3

∫

Tε

∇θε∇Φ dx +

+

∫

Ωε

uε∇θεΦ dx = Fε(Φ).
(32)

First we consider the unique solution of the following problem:

∆W ε = 0 in C(rε, Rε), (33)

W ε = 1 in r = rε, (34)

W ε = 0 in r = Rε. (35)

that is,

W ε(y) =
rε

(Rε − rε)

(

Rε

r
− 1

)

if y ∈ C(rε, Rε) and r := |y|.

Proposition 4.1 Setting

wε(x) :=







0 in Ωε \ Cε,
W ε(x− εk) in Ckε , k ∈ Zε,

1 in Tε,
(36)
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we have
|∇wε|Ω ≤ C (37)

Lemma 4.2 If for any ϕ,ψ ∈ D(Ω) we denote Φε ∈ H1
0 (Ω) by

Φε = (1− wε)ϕ+ wεGrε(ψ), (38)

then, as limε→0 |Φ
ε − ϕ|Ω = 0, we have

lim
ε→0

∫

Ωε

∇θε · (∇Φε +Φεuε) dx

=

∫

Ω
∇θ · (∇ϕ+ ϕu) dx+ γ

∫

Ω
(θ − τ)(ψ − ϕ) dx,

where (uε, θε) is a solution of (9).

Using Lemma 4.2, the two heat equations of the homogenized system are easily obtained. They are
given by the next corollary.

Corollary 4.3 The limit (u, θ, τ) verifies

u∇θ −∆θ + 4πγ(θ − τ) = f in Ω, (39)

4πγ(τ − θ) =
4πb

3
g in Ω. (40)

5 The homogenized problem

From [7], we find that there exists an extension of the pressure (denoted by p̂ε) and some p ∈ L2(Ω)
such that

p̂ε ⇀ p in L2(Ω)/R. (41)

We denote by (wk
ε , q

k
ε ) ∈ H

1(C(rε,
ε
2))×L

2
0(C(rε,

ε
2)) the only solution of the following Stokes problem

divwk
ε = 0 in C(rε,

ε

2
),

−∆wk
ε +∇q

k
ε = 0 in C(rε,

ε

2
),

wk
ε = 0 if r = rε,

wk
ε = e(k) if r =

ε

2
.

Correspondingly, we define

vkε (x) =







0 if x ∈ Tε,
wk
ε (x− εi) if x ∈ Ci(rε,

ε
2), i ∈ Zε,

e(k) if x ∈ Ωε \ ∪i∈ZεC
i(rε,

ε
2).
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Setting v = ϕvkε in (9), for some ϕ ∈ D(Ω), and using the energy method like in [1], we find that the
limits satisfy the following Brinkman type homogenized equation:

−∆u+ 6πγu = −∇p+ aθe(3) in Ω. (42)

Finally, the results of Proposition 3.3, Corollary 4.3 and relations (41)-(42) are summarized by our
main theorem:

Theorem 5.1 If (uε, θε) is a solution of problem (9), then there exists an extension of the pressure
(denoted by p̂ε) such that the following convergences hold on some subsequence

p̂ε ⇀ p in L2(Ω)/R. (43)

ûε ⇀ u in H1
0 (Ω;R

3), (44)

θε ⇀ θ in H1
0 (Ω), (45)

Grε(θ
ε) ⇀ τ in L2(Ω). (46)

The limit (p, u, θ, τ) is a solution of the following system

divu = 0 in Ω. (47)

−∆u+ 6πγu = −∇p+ aθe(3) in Ω, (48)

u∇θ −∆θ = f +
4πb

3
g in Ω, (49)

τ = θ +
b

3γ
g in Ω. (50)

Remark 5.2 If we assume that a > 0 is small enough, then the homogenized system has a unique
solution in the corresponding space and the convergences of Theorem(5.1) hold on the entire sequence.
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