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ABSTRACT 
 

Flow fields generated by aircraft manoeuvres and departure at high angles 
of attack are highly complex due to the simultaneous presence and interaction of 
three-dimensionality, unsteadiness, separation and reattachment influences. In 
order to some to grips with, the modeling of such a formidable flow regime it is 
necessary to start with a simpler flow regime in which flow separation and 
reattachment play a fundamental role. Two-dimensional dynamic stall fits the bill 
and so it has been investigated. 

Therefore an axiomatic aerodynamic model has been developed for the general motion 
of a two dimensional airfoil as it posses in and out of stall, which gives realistic unsteady loads as 
compared to experimental values. 

 
 
1. INTRODUCTION 

 
The phenomenon of dynamic stall on oscillating two-dimensional airfoils has 

been studied for many years, both as an important practical problem in the context of 
helicopter rotors and as a challenging fundamental problem in its own right. 

Dynamic stall can be divided into a number of distinct stages [1, 2]. Figure 1 
shows the typical dynamics hysteresis in CL and CM and with angle θ(t) as θ(t) oscillates 
about a mean value of 150 with an amplitude of 100 at a non-dimensional frequency 

 equal to 0.20 (in aircraft dynamic notation the incidence angle α(t) is equal to 
θ(t), so the airfoil has both a pitch rate θ  and incidence rate ). The static curves for 
C

( Vck /ω= )

                                                

( )t& ( )tα&

L and CM against θ are shown in Fig. 1 as dotted curves; the static curve in this case 
has no hysteresis although for other airfoils a small static hysteresis behaviour can 
occur. In the dynamic case the flow remarks attached to a higher angle of θ than that for 
steady stall, (θ = θ1 in Fig. 1) Sometime after θ exceeds the static stall angle (i.e. θ > θ1), 
a thin layers of reversed flow develops on the upper surface. 
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Flow separation occurs later (when θ = θ3 in Fig. 1), the separation may take 

form of a trailing edge separation which starts towards the rear of the airfoil and moves 
quickly forward to the leading edge or as a sudden leading edge separation. In either 
case, a vortex forms near the leading edge region and then convects rearward at a 
speed about half of the free stream velocity. The lift continues to increase until the vortex 
is well past mid-chord. The associated change in the pressure distribution causes the ¼ 
-chord pitching moment to plunge to a large negative value. As the vortex nears the 
trailing edge, the lift and moment reach peaks , although usually not simultaneously and 
then change dramatically. 

As θ decreases to an angle about that for steady reattachment, a reattachment 
point forms near the/nose and moves rearward at a speed below the free stream 
velocity. When the reattachment reaches de trailing edge the flow is fully attached, by 
this time the angle θ is well below the steady reattachment angle. 

The objective of this paper is to build an axiomatic theoretical model which 
duplicates the various stages of dynamic stall on an airfoil, and then investigate the 
implications of the axiomatic model in dynamic response. 

 

 
Fig.1 – Dynamic stall events on the VERTOL VR-7 aerofoil at , 

, 
25.0=∞M

tω+=θ sin1015 00

and  points defined in Table 1. 10.0=ν
 

Table 1 

Point Flow Structure Forces and Moments 
1 Thin attached boundary 

layer 
Linear regime 

2 Flow reversal within 
boundary layer 

Exceed static C  extrapolate 
linear regime 

maxL

3 Vortex detaches and moves 
over airfoil surface 

Pitching moment diverges, vortex 
lift present 

4 Vortex continues towards 
trailing edge 

Maximum lift and moment, followed 
by rapid decay  

5 Secondary vortex Secondary peaks 
6 Reattachment of flow from 

leading edge 
Readjust to linear regime 
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Fig. 2 – Model for steady attached flow 

2. AXIOMATIC MODEL  
2.1. Steady state, below stall (no separation) 
For on airfoil at a steady angle of attack below the static stall angle the axiomatic 

model, as shown in Fig. 2, consists of a concentrated vortex placed on the ¼ - chord line 
and the boundary condition of tangency of flow is satisfied on the ¾ - chord line. This 
model is known to give the correct steady value of CL and CM for a symmetric airfoil 
throughout the angle of attack range for attached flow. 

2.2 Steady state, above stall (leading edge separation) 
For a airfoil at a steady angle of attack above the static stall angle (taken to be 

120) the axiomatic model, shown in Fig. 3 consists of the following features. 

 
Fig. 3 – Model for steady flow. 

 1) separating streamlines of continuous vorticity extend from both the airfoil 
leading edge and airfoil trailing to infinity enclosing a dead air region the strengths of 
these convected vortex sheets wγ  are taken to be  as indicated in Fig. 3, namely 
difference in velocity between the free stream velocity and dead air region; 

RV±

 2) assuming a dead air region aft of the airfoil, a uniform vorticity distribution  
is introduced on the airfoil chord of strength V  in order to cancel out locally the 
freestream velocity behind the airfoil in the wake; 

aγ
θcosR

 3) a discrete bound vortex of strength  is placed on the ¼ - chord line; Γ
 4) a discrete bound vortex of strength ( ) is placed on the ¾ - chord line 
on the argument that for small angle θ the vortex strength on the ¾ - chord line is small 
but as θ  the vorticity must be antisymmetric about the airfoil mid-chord; 

πθΓ− /2

2/π→
 5) since there is only one unknown  to be determined at a particular angle θ 
only one collocation point is required; this collocation  point, where the condition of 
tangency of flow is to be satisfied, is taken at the mid-chord point, chosen to ensure 
symmetry about the mid-chord as θ . 

Γ

2/π→
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Fig. 4 – Graph of steady  C  versus incidence . L θ

 Once Γ  has been calculated then the normal force on airfoil can be determined 
from the forces on the two discrete vortices ( , from the resultant normal 
force on the airfoil vorticity 

)/2, πθΓ−Γ

aγ , and with a further contribution from an empirical uniform 
loading , which allows for the difference in total head across the airfoil. For predicted 
results to compare with experimental data the variation of the ∆  term with angle θ 

takes the form of a linear variation from 

H∆
H



ρ 2

RV



2
16.1  when θ is 120, the stall angle, up to 



2

RV

 ρ

2
10.2  when θ is 450, for θ above 450 







 ρ∆ 2

2
1

RVH  is taken to be constant and 

equal to 2.0, a reasonable value of CN compared with experiment for a tow-dimensional 
plate normal to a free stream. 

The comparison of the axiomatic lift coefficient with a typical set of experimental 
data [4] is shown in Fig. 4, where the sudden drop in CL at the stall is not untypical for a 
leading edge stall. Figure 5 shows CM0, the moment coefficient about the leading edge, 
derived from the axiomatic model. It is of interest to note that the discontinuity in CM0 at 
stall is small due to the fact that when the airfoil stalls the loss in left is compensated by 
an aft movement of the centre of pressure. The discontinuity in the rate of change of CM0 
at θ equal to 450 is due to the change in the variation of  with θ. H∆
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Fig. 5 - Graph of steady C  versus incidence 

leM

2.3 Unsteady motion below stall (trailing edge separation)  
Suppose that the airfoil is pitching about its leading edge, defining the time dependent 
pitch angle θ(t) as shown in Fig. 6. Suppose that for t < t0 the airfoil is steady at the 
inclined angle θ = θ0 so that a steady circulation  acts about the airfoil. With the model 
already formulated Γ  is assumed to be concentrated into a line vortex located on the ¼-
chord line. 

0Γ

0

 If the time-dependent motion starts at t0, then after a time interval ∆ , the 
time taken for the free stream to travel one chord) the pitch angle will be θ

RVct /(=

1 and the 
model of vorticity is a discrete vortex of strength  located on the ¼-chord line with a 
shed vortex, of sthength ( ) located on the line one chord aft of , that is on the 
line ¼-chord aft of trailing edge as shown in Fig. 6. The overall circulation remains 
constant in accordance with Kelvin’s theorem. The value of Γ  is found from the 
boundary condition that the normal induced velocity due to  and , at the ¾-chord 
collocation point, together with the normal component of the free stream velocity, is 
equal to the normal velocity of the airfoil section at that collocation point. 

1Γ

01 Γ+Γ− 1Γ

0

1

1Γ Γ
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Fig. 6  - Attached flow past an unsteady aerofoil 

 After the next time interval (i.e., at time ) when θ is equal to θttt ∆+= 12 2, the 
pattern of vortices, as shown in Fig. 6, comprises. 

1) a bound vortex of strength  on the ¼-chord line; 2Γ
2) a newly shed vortex of strength ( − ) on the ¼-chord line aft of the 

trailing edge; 
12 Γ+Γ

3) the convected vortex of strength ( ) now located on the 5/4-chord 
line aft of the trailing edge. 

01 Γ+Γ−

The strength of the vortex  is given by applying the condition of tangency of 
flow at the ¾-chord point in the some way as at time t

2Γ
1, as explained above. This 

sequence can be continued in time intervals of . t∆
This model is reasonable for slow rates of change such as overall aircraft 

motions in a stability and control context because of the relatively long aerodynamic time 
interval of , which it is rather too long for aeroelastic phenomena such as 
flutter. 

( RVct /=∆ )

The above, axiomatic model of unsteady attached flows has been applied to an 
airfoil oscillating in pitch about an axis at the leading edge in a steady flow of velocity VR 
with θ(t) equal to θ . Values taken are θtωsin0 0=100, c =1 m and VR=30m/s. CL(t) at 
different rates of oscillations are found and compared with the quasi-steady formula  

. ( )( )tCL πθ= 2
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Fig. 7 - Aerofoil oscillating in a steady flow, 333.0=ω=ν RVc .  

Results for CL are shown in Fig. 7 when  the frequency parameter is 
equal to 1/3. The difference between the oscillatory and quasi-steady results is noted the 
oscillatory amplitude is approximately 14% less than the quasi-steady value (the value 
from unsteady linearised theory is about 16%). A slight phase difference exists between 
the input θ and C

( Vc /ω=ν )

)

)

L (the theoretical value is also small). 
2.4. Development of unsteady separation (leading edge separation) 
Next it is necessary to formulate an axiomatic process of separation as the time-

varying airfoil angle passes up through the static angle of 120 and continues to increase. 
Consider the case where θ(t) is increasingly monotonically from a low value to a higher 
value. 

It is known from experiments that there is a delay in the onset separation for a 
dynamic approach to stall. It is assumed that onset of separation is delayed by one time 
step (i.e. for a delay time ∆ ); this time delay is not arbitrary, it fits closely with 
experimental behaviour. Thus if  is less than 12

t
( ii tt =θ at 0  and if  is 

above 12
( )11 at ++ =θ ii tt

0 then it is assumed that attached flow continues until and including 
 While the unsteady flow remains attached the unsteady vortex model is 

that described previously. This model is reproduced in Figs. 8(I), 8(II), which shows the 
vortex pattern at time t

( 22 at ++ =θ ii tt

i, ti+1, ti+2, for θi, θi+1, θi+2. 
A separation pattern model for θ > θi+2, at t > ti+2 develops progressively. At times 

tI+3, and ti+4 it is assumed that separation occurs at the leading edge and it takes 
increment of time 2  for the leading edge vorticity to form. This stage is called half or 
incipient separation and it is shown in Fig. 8(III). Continuous vorticity of strength V

t∆

R

4

R is 
placed on the developing upper separation streamline together with an associated 
vorticity of strength V  over the foremost half-chord of the airfoil. There is the one 
discrete vortex  on the airfoil ¼-chord line, and the shed vorticity associated with the 
change in strength of the airfoil discrete vortices is convected aft of the trailing edge. The 
collocation point to determine  remains at the ¾-chord point. It is assumed that the 
continuous vorticities do not contribute to the downwash at the collocation point so  
is calculated according to the same formulae as in attached conditions. But half 

θcos

+Γi

4+Γi

4+Γi
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separation is characterized however by an increase in normal force. 

 
Fig. 8(i) Attached flow, . )(12 rad 21.0 0<θi

 
Fig. 8 (ii) Separation delay . 

 
Fig. 8 (iii) Half separation ( ) . 24 ++ θ>θ ii

 
Fig. 8 (iv) Separation  . ( )46 ++ θ>θ ii

After half separation it is assumed that it takes two further increment of ∆  
for the leading edge separation to extend to 1 chord aft of the leading edge. 

( )6+itt

As shown in Fig. 8(IV) the upper streamline vorticity of strength VR now extends 
about 1 chord aft of the leading edge with vorticity of strength V  on the airfoil 6cos +θiR

 8 



CIC-F.Mech.&Tech.Appl., Bucharest, November, 2005 

chord. There is still one discrete vortex  on the ¼-chord line. The collocation point is 
now switched on the ½-chord point. This flow regime is called separation. At separation 
the empirical difference factor  needs to be introduced. The empirical value of 

6+Γi

H∆
( )22/1/ RVH ρ∆

t

t∆2

 is taken to be 2.0, which is higher than in the steady separation model at 
low angles but it appears necessary to do so in order to obtain reasonable results. 

θcos
)πθ /

For  separating streamlines of uniform vorticity ( ) extend from both the 
airfoil leading edge and airfoil trailing edge to infinity enclosing a dead air region. There 
is also a uniform vorticity distribution V  on the airfoil chord and two discrete bound 
vortices of strength Γ  and (  are placed on the ¼ and ¾-chord line respectively. 
A major assumption is that the whole time varying shed vorticity is placed in discrete 
vortices shed from the trailing edge, that appear to be reasonable when the airfoil pitch 
angle is increasing.  

8+> it RV±

R

Γ− 2

The shed vortices from the trailing edge are assumed to convect downstream 
with velocity .V  (i.e. at half the speed in the attached flow regime) on the argument 
that the mean velocity  of convection between the dead air enclosed within the wake and 
the freestream is V . Subsequent calculations are carried out in time increments of 

 The patterns at full separation at times t  and  are shown in Fig. 8(V, VI). 

2/R

2/R

8+i 10+it

 
Fig. 8 (v) Full Separation  . ( )68 ++ θ>θ ii

 
Fig. 8 (vi) Full Separation  . ( )810 ++ θ>θ ii

To validate the model numerical results for the normal force on an airfoil, when the angle 
of attack is increasing at a uniform rate, are compared with experiment and are shown in 
Fig. 9. The experimental results are taken from Ref. 3. In the experiments a two-
dimensional airfoil model having a NACA 0012 profile with a 0.2 m chord is mounted on 
a pitch rig in a wind tunnel. The airfoil is then subjected to an increase of angle of attack 
with angular velocities 5.74 rad/s in a freestream velocity of 19.2 m/s. The results are 
measured by two different methods: by means of strain gauges and pressure 
transducers. For both cases the numerical model gives more normal force in the initial 
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half separation stage. Numerical C  agrees closely with experimental . 
Therefore, the axiomatic model gives acceptable trends for a motion with increasing 
incidence. 

maxN maxNC

  

 
Fig. 9  – Constant rate of increase of pitch angle.  

 

2.5. Development of unsteady reattachment 
The process of unsteady flow reattachment is now modeled. Suppose for , 

the flow is steady in a separated state (Fig. 10(I)), and then θ  decreases with time. At 
, assuming that  is greater than 0.21 rad (=12

itt <

2+it ii θ<θ + 2 2+θi
0), the model is virtually 

the same as at time ti except that the shed discrete vortex is now shed along the top 
dividing streamline (Fig. 10(II)). 
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Fig 10 (i) – Steady separated flow . )(12 rad 21.0 0>θi

 
Fig. 10 (ii) - Unsteady separated flow,  θ  rad. 21.02 >θ> +ii

If  is still greater than 0.21 rad then the same model applies as shown in Fig. 
10(III). At t  when the pitch angle  is less than 0.21 rad it assumed that the flow 
begins to reattach. As shown in Fig. 10(IV), the upper dividing separation streamline now 
moves down the airfoil surface and starts from the airfoil ½-chord line. The continuous 
vorticity on the airfoil also moves down to the aft airfoil behind ½ chord line. A single 
discrete vortex is located on the ¼-chord line. The collocation point is switched to the ¾-
chord line. This stage of flow reattachment is called incipient or half reattachment . 

4+θi

6+i 6+θi

 
Fig. 10 (iii) - Unsteady separated flow,   rad. 21.042 >θ>θ ++ ii

With a further single increment of time at t , the flow becomes fully attached as 
shown in Fig. 10(V) where a discrete vortex at the airfoil ¼-chord and discrete vortices in 
the planar wake are the only form of vorticity left in the system. No experimental results 
with decreasing θ  are available. It is noted that the flow separation takes a much longer 
time to build up than for flow reattachment to establish itself, this behaviour being a 
strong feature of real flows. 

7+i

 
Fig. 10 (iv) - Unsteady reattachment,   rad. 21.06 <θ +i
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Fig. 10 (iv) - Unsteady reattachment,   rad. 21.07 <θ +i

 
Fig 11 (i) – The effect of reduced frequency  on the NACA 0012 aerofoil at =0.3  ν ∞M

and  (experimental results) tω+=θ sin510 00

 
 

 
Fig 11 (ii) – The effect of reduced frequency  on flat plate at =0.3  ν ∞M

and  (axiomatic aerodynamic results) tω+=θ sin510 00

 
3 . CONCLUSIONS 
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 An axiomatic aerodynamic model has been developed for the general motion of a 
two-dimensional airfoil as it passes in and out of stall. Then the model has been applied 
to a dynamic stall situation with an oscillatory airfoil and compared with experimental 
results (Fig. 11(I, II)) [2]. Although the present axiomatic model does not represent the 
detailed conditions of the reattachment process in all considered motions 

 it is thought that the model gives realistic unsteady loads as compared 
to experimental values. 
( 4.0;2.0;05.0=γ )
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