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Abstract

We consider a non-Fickean diffusion model for binary mixtures. Here, the flux is not governed
by Fick’s law, it is governed by an evolution equation, derived from the partial balance momenta
under the hypothesis of “small” diffusion velocities. We apply this model to a binary non-reactive
mixture with zero average velocity at thermal equilibrium. In particular, Fick’s model is recovered
as a first order perturbation of the non-Fickean model.
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1 Introduction

Fick law constitutes the most used model of diffusion processes in fluid mixtures. In this approach the
time evolution of the concentration of the constituents is governed by a parabolic partial differential
equation. A major drawback of the model is given by that in the context of linearized theory it
predicts infinite speed propagation of the perturbation. This fact is known as the paradox of the
diffusion theory.
This paradox can be excluded by considering an evolution equation for the diffusive flux instead of Fick
law [1]. The new equation results from the equation of partial momenta and the equation of global
momentum. In the sequel, we briefly describe how one can obtain this equation. For more general
informations in the theory of the mixtures, the reader is referred to [1],[2].
The mixture can be considered as a single fluid if one thinks that each position x may be occupied
simultaneously by several different particles Xa, one for each constituent a. Each constituent has its
individual density ρa and its individual velocity va, a = 1, ..., n. The mass density ρ and the velocity
v of the mixture are defined by

ρ =
∑

ρa, v =
∑ ρa

ρ
va. (1)

Assuming that there exists a unique temperature T for all constituents, the fields ρa(x, t), va(x, t),
T (x, t), for all a = 1, ..., n are determined by solving the equations of mass balance, momentum balance
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of the constituents and the equation of balance for energy of the mixture. In the absence of the external
forces and external radiation sources, these balance laws read

∂tρa + ∂iρav
i
a = m̃a, (2)

∂tρav
j
a + ∂i(ρav

i
av

j
a − tjia ) = h̃j

a,

∂tρ(ε+ 1/2v2) + ∂i(ρ(ε+ 1/2v2)vi − tijvj + qi) = 0,

where m̃a represents internal mass production due to the chemical reactions, h̃a represents the internal
production of partial momentum due to the collisions between different constituents and ta denotes
the partial stress tensor. In the last equation resulting from the balance of total energy ε, t, q stand
for internal energy, stress tensor and heat of the mixture, respectively.
By summing up the mass and momentum equations one obtain the continuity equation and the
momentum equations for the mixture

∂tρ+ ∂iρv
i = 0 (3)

∂tρv
j + ∂i(ρvivj − tij) = 0

One defines the diffusion velocity of the first constituent, as u = v1 − v, its diffusion flux as J = ρ1u

and its mass concentration by c =
ρa

ρ
. We consider, c(x, t), J(x, t), ρ(x, t), v(x, t), T (x, t) as state

variables for the binary fluid.
The equation (21) can be rewritten as

∂tρc+ ∂i(ρcvi + J i) = m̃. (4)

This equation and the Fick law
J = −ρD∇c, (5)

constitute the classical kinetic model of diffusion processes, i.e the Fickean model.
A non-Fickean model for diffusion processes can be defined as a model in which Fick’s law is no longer
true. Here, we develop a non-Fickean model. We have the following identities

ρ1v1 = J + cρv, ρ1v
i
1v

j
1 = J ivj + J jvi + cρvivj + ρ1(vi

1 − vi)(vj
1 − vj).

By neglecting the quadratic term in diffusion velocity, we approximate the equation (22) by

∂t (J + cρv) +∇ · (J ⊗ v + v ⊗ J + cρv ⊗ v − t1) = h̃. (6)

Using (3) and (4), the equation (6) can be written as

∂tJ +∇ · (J ⊗ v + v ⊗ J)− v∇ · J + c∇ · t−∇ · t1 = h̃− vm̃ (7)

As in [1], we assume that the production of partial momentum h̃ has the form

h̃ = v1m̃+M11 ρ

ρ1ρ2
J . (8)
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Concerning the constitutive relations for the stress tensor, we assume that each constituent of the
mixture, as well as the mixture are inviscide fluids. Then, the constitutive relations for the stress
tensor are given by

tija = −paδ
ij , tij = −pδij , (9)

where pa and p represent the partial pressure and total pressure, respectively. Another constitutive
assumption is the Dalton law

pa = cap (10)

The assumptions (8), (9) and (10) lead to

∂tJ +∇ · (J ⊗ v + v ⊗ J)− v∇ · J + p∇c =
(
m̃

ρ1
+M11 ρ

ρ1ρ2

)
J . (11)

We conclude that the basic equations describing the non-Fickean diffusion for binary inviscide reactive
mixture are: the equation of balance for the total energy (23), the equations of balance for mass and
momentum (3) with the stress tensor given by (9), the equation of the partial mass production (4)
and the equation for partial momenta (11). Besides these equations, one must add constitutive laws
regarding the internal energy ε(ρ, T ), the state equation p(ρ, T ), the mass production m̃(c, ρ, T ) and
for the coefficient M11(c, ρ, T ) appearing in the partial momenta production.

2 Telegraph Equation as Model for Non-Fickean Diffusion

In this section we analyse a simplified case of non-Fickean diffusion. We consider a non-reactive mixture
at rest, at thermal equilibrium. Then the temperature T (t,x) and the mass density ρ(t,x) are constant
fields, (say T0, ρ0,) and the velocity v is a null field.
The only variable fields considered here are the concentration c(t, x) and its diffusion flux J(t, x)
depending on the time t > 0 and the position x ∈ R. The governing equation are given by

ρ0∂tc+ ∂xJ = 0,

∂tJ + p0∂xc = M11 ρ0

ρ1ρ2
J.

Assume that the coefficient M11 has the following dependence on ρ1 and ρ2

M11 ρ0

ρ1ρ2
= − p0

ρ0D
. (12)

We obtain

ρ0∂tc+ ∂xJ = 0, (13)
ρ0D

p0
∂tJ + ρ0D∂xc = −J.

Note that, if the first term on the l.h.s of the second equation is dropped out, one obtain the Fick
law for diffusion. Our purpose is to compare the solution given by equations (14) with the solution of
classical diffusion equation.
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It is more convenient to work with dimensionless variable. As we can see, the explicit parameters in
equations (14) are p0, ρ0 and D. We are interested in defining a characteristic time and a characteristic
length. For our purpose, it not proper to use the characteristic length as a combinations of p0, ρ0 and
D.
Let L be a characteristic length. Consider D to be another characteristic dimension of the problem.
We introduce the following dimensionless quantities:

t = L2D−1t̃, x = Lx̃, J = ρ0DL
−1J̃ .

The dimensionless form of equations (14) can be written

∂tc+ ∂xJ = 0, (14)
ε∂tJ + ∂xc = −J,

where the dimensionless parameter ε is given by

ε =
D2

L2

ρ0

p0
. (15)

If one eliminates the diffusive flux from the equations (14), one obtains equation for the mass concen-
tration. This equation is known as the telegraph equation

ε∂2
t c+ ∂tc = ∂2

xc. (16)

We point out two important facts related to the non-Fickean model introduced above:
(a) The time evolution of mass concentration is governed by a hyperbolic equation, instead of parabolic
equation as in Fick’s model,
(b) The Fick model can be viewed as first order perturbation of the present model.
We consider the Cauchy problem for (14) with the initial conditions:(

c, J
)∣∣

t=0
=
(
c0(x), J0(x)

)
. (17)

Let

u =
(
c
J

)
, Aε =

(
0 −∂x

−ε−1∂x −ε−1

)
.

The Cauchy problem for the non-Fickean diffusion problem (NFDP) takes the form
du

dt
= Aεu

u|t=0 = u0

. (18)

We also consider the Cauchy problem for Fickean diffusion
dw
dt

= 4w

w|t=0 = c0

. (19)

Our main result is:
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Theorem 2.1 Assume that the initial datum u0 is a bounded continuous function and u, ∂xu, ∂
2
xu

belong to L2(R). Let uε(t, x) be the the solution of the (NFDP), w(t, x) be the solution of the (FDP).
Then we have the following properties:
(1) Finite speed of propagation. If the initial datum c0 has compact support, then the solution cε(t, x)
has also compact support for any finite time t
(2) Fickean diffusion as singular asymptotic limit of non-Fickean diffusion. The following relations
hold

lim
ε→0

cε(t, x) = w(t, x), (20)

lim
ε→0

(Jε(t, x) + ∂xcε(t, x)) = 0. (21)

Proof. The solution of the (NFDP) is obtained by using the Fourier transform. For any absolute
integrable function ψ its Fourier transform is given by

ψ̃(ξ) =
∫

Rn

exp(−ix · ξ)ψ(x)dx.

The original problem for Fourier transform reads
dũ

dt
= Aε(ξ)ũ

ũ|t=0 = ũ0(ξ)

(22)

where the matrix Aε(ξ) has the expression

Aε =
(

0 −iξ
−ε−1iξ −ε−1

)
.

The Fourier transform of the solution is given by

ũ(t, ξ) = Ẽ(t, ξ; ε)ũ0(ξ).

Returning to the original variables, we have

u(t, x) = E(t; ε) ∗ u0(x). (23)

By standard calculations, we obtain

Ẽ(t, ξ; ε) := et Aε(ξ) = e
−
t

2ε

 ωε(t, ξ) + 2ε∂tωε(t, ξ) −2εiξωε(t, ξ)

−2iξωε(t, ξ) −ωε(t, ξ) + 2ε∂tωε(t, ξ)

 ,

where

δ =
√

1− 4εξ2, ωε(t, ξ) =
e
tδ

2ε − e
−
tδ

2ε
2δ

.
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(1) To demonstrate that the solution cε(t, x) has compact support we calculate the convolution (23).
The inverse Fourier transform of ωε(t, ξ)c̃o(ξ) is given by [3]

φε(t, x; c0) =
1

4
√
ε

∫ x+t/
√

ε

x−t/
√

ε
I

(
1
2ε

√
t2 − ε(y − x)2

)
c0(y)dy,

where

I(z) =
1
π

∫ π/2

−π/2
ez sin φdφ.

Using this formula, we obtain

et/2εcε(t, x) =
c0(x+ t/

√
ε) + c0(x− t/

√
ε)

2
+

t

4ε

∫ 1

−1

[
I

(
t

√
1− y2

2ε

)
+

1√
1− y2

I ′

(
t

√
1− y2

2ε

)]
c0(x+

yt√
ε
)dy

−
√
ε
j0(x+ t/

√
ε)− j0(x− t/

√
ε)

2
−

t

4ε

∫ 1

−1

y√
1− y2

I ′

(
t

√
1− y2

2ε

)
j0(x+

yt√
ε
)dy

and similarly for j(t, x). From here, one obtains that if the initial data has compact support, then for
any finite time the solution has also compact support.
(2) We have

lim
ε→0

Ẽ(t, ξ; ε) =

(
e−ξ2 t 0
−iξe−ξ2 t 0

)
.

Observe that the function
w̃(t, ξ) = e−ξ2 tc̃0(ξ)

solves the (FDP). Taking into account that the elements Ẽ(t, ξ; ε)ũ0 are bounded by some square
integrable functions, we obtain the first limit (20) (L2(R) convergence). The second limit in (21) is
similarly proved.
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