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Abstract

The paper analyses two speed regulators for a uniform response in the case of some mechanisms
with periodic motion. For the first mechanism with one degree of freedom, the conditions for
uniform motion are computed in three cases: I. the vibrating mass is a rigid coupling with the
elastic force and the damping force, II. the vibrating mass is a rigid coupling with the hardened
elastic force and the damping force, III. the vibrating mass is a rigid coupling with the elastic force,
the hardened elastic force and the damping force. For the second mechanism with two degrees of
freedom, the vibrating mass is serially linked with the elastic and damping forces. This analysis
leads to the study of some Duffing equations. The obtained equations being nonlinear, we apply the
averaging method and the Van der Pol method. The stability of solutions in the phases space, the
limit cycles for a uniform response of the system and the conditions of resonance are also studied.
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1 Introduction

The importance of the study of nonlinear dynamical systems in the field of vibrating machines and
mechanisms is well known (see [1], [2]). Applications of speed regulators and absorbers are met in
technics at every step (see [4], [7]). The mathematical model leads to nonlinear dynamical systems,
therefore this study is carried out by considering numerical and approximation methods and by using
the results of the linear stability (see [3], [6]). In order to get a uniform motion for the mechanisms,
we will deduce validity conditions for the geometrical and mechanical parameters by averaging the
nonlinear dynamical systems.
In order to find solutions, similarly to the constants variation method, there are considered parameters
and coefficients with slow variation which can be adapted to Van der Pol method.
In order to determine the rotary angular speeds in the case of uniform motion, graphic and analytic
methods are applied and attraction areas for limit cycles are specified. Generalizations and important
applications to transport and machine tools are pointed out (see [1], [4]).
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2 The study of the dynamical system with rigid coupling

We consider a rigid body of mass m with one degree of freedom, subject to an articulated link with
the connecting rod-crank device as well as to some elastic and hardened elastic links with a damper
(Figure 1). The connecting rod and the crank’s lengths are l, respectively r. The coefficient of linear
elasticity stands for k, the coefficient of nonlinear elasticity stands for k∗ and the damping coefficient
stands for c. The point A has a rotary motion around the O1-axis and the mass m (B) performs a
vertical motion on the Oy-axis. The point O is chosen so that OO1 = l. A flywheel of radius R is
fixed on the O1-axis. A rigid body of mass M is hanged up on a wire which is winded on the flywheel.
Therefore, the gravity force M~g is acting upon the flywheel. Note that the crank A and the flywheel
have the same angular speed ϕ̇ = ω, where ϕ is the angle between O1A and the horizontal axis Ox.
We denote by y = yB the ordinate of m and ψ = O1B̂A.

Figure 1: The connecting rod-crank mechanism

By applying the impulse theorem and the theorem of the kinetic moment with respect to the considered
coordinate system, we obtain

mÿ + cẏ + ky + k∗y3 = F ⇔ ÿ + 2nẏ + p2y + αy3 = F/m, (1)

Iϕ̈ =MgR−M (F1) , (2)

where 2n = c/m, p2 = k/m, α = k∗/m, ~Fe = −ky~j is the elastic force, ~F ∗

e = −k∗y3~j is the hardened
elastic force, ~Fa = −cẏ~j is the damping force, ~F is the resultant of these forces together with the
inertial force mÿ~j, F1 = F/ cosψ, I = I0+MR2, I0 is the inertial moment of the flywheel with respect
to O1. Note that (1) is a Duffing equation.
Denote r/l = λ < 1. In AO1B we have r cosϕ = l sinψ, therefore cosψ =

√

1− λ2 cos2 ϕ. Using the

binomial formula 1/ cosψ =
(

1− λ2 cos2 ϕ
)

−1/2 ∼= 1 +
(

λ2/2
)

cos2 ϕ, we deduce

F1 = F

(

1 +
λ2

2
cos2 ϕ

)

. (3)

From M (F1) = F1r sinϕ, (2) şi (3) we get

Iϕ̈ =MgR− F
(

1 +
λ2

2
cos2 ϕ

)

r sinϕ. (4)
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The calculus of y = yB leads to y = l + r sinϕ − l
√

1− λ2 cos2 ϕ. This formula, together with the
binomial formula

√

1− λ2 cos2 ϕ ∼= 1−
(

λ2/2
)

cos2 ϕ implies

y = r

[

sinϕ+
λ

4
(1 + cos 2ϕ)

]

. (5)

The statement of problem 1 It is asked to find the angular speed ω = const of the flywheel,

knowing that the flywheel has a uniform motion, i.e. ϕ̇ = ω = const. It is also asked to find the initial

angular speed ω0 of the flywheel in order to have a stable rotation of the flywheel, i.e. ω → const when
t→∞.

The problem can be generalized by considering that the flywheel is coupled with a rotative motor
shaft which generates given moments with some given characteristics (see [2], [4]).
By eliminating y between relations (1) and (5), there remains only one degree of freedom, namely
ϕ ∈ [0, 2π], which additionally satisfies ϕ̇ = ω, with ω̇ ∼= 0 (i.e. ω has a slow variation in time). We
have

{

y = r
[

sinϕ+ λ
4 (1 + cos 2ϕ)

]

, ẏ = rω
(

cosϕ− λ
2 sin 2ϕ

)

,

ÿ = −rω2 (sinϕ+ λ cos 2ϕ)
(6)

and so, relation (1) becomes

F/m = −rω2 (sinϕ+ λ cos 2ϕ) + 2nrω

(

cosϕ− λ

2
sin 2ϕ

)

+p2r

[

sinϕ+
λ

4
(1 + cos 2ϕ)

]

+ αr3
[

sinϕ+
λ

4
(1 + cos 2ϕ)

]3

. (7)

Using ϕ̈ = ω̇ ∼= 0, relation (4) becomes

MgR− Fr
(

sinϕ+
λ2

2
sinϕ cos2 ϕ

)

= 0. (8)

We eliminate F between (7) and (8) and then we average the obtained relation using the period T = 2π;
recall that the average of a function f (x, λ) on the interval x ∈ [0, T ] is f (λ) = 1

T

∫ T
0 f (x, λ) dx. Here,

(x, λ) = (ϕ, ω), ϕ ∈ [0, 2π]. performing the calculations, we obtain

−r2ω2

(

1

2
+
λ2

16

)

+ p2r2
(

1

2
+
λ2

16

)

+ αr4
(

3

8
+

5λ2

64
+

15λ4

45

)

=
MgR

m
.

Hence, using the approximation λ4 ∼= 0 and denoting β = 16MgR
mr2

, we finally get

ω2 =
1

λ2 + 8

[

p2
(

λ2 + 8
)

+ α

(

5r2λ2

4
+ 6r2

)

− β
]

. (9)

The study of equation (9) is performed in three cases.
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I. First, we deal with the case when the vibrating mass m is rigidly coupled only with the elastic force
and the damping force, i.e. α = 0. Equation (9) becomes

ω2 = p2 − β

λ2 + 8
. (10)

The following situations appear:
1) If p2 − β

λ2+8
> 0, then equation (10) has two solutions ω∗

1,2 =

∓
√

p2 − β
λ2+8

. By noticing that sgnω̇ = sgn
[

ω2 −
(

p2 − β
λ2+8

)]

(see (4)), we deduce that ω∗

1 is a

stable attractive point and ω∗

2 is an unstable repulsive point. This means that if we start the motion
with ω0 ∈ (ω∗

1 − ε, ω∗

1 + ε), then ω → ω∗

1 when t→∞, so the flywheel motion becomes stable.
2) If p2− β

λ2+8
= 0, then equation (10) has one solution ω∗

1 = ω∗

2 = 0 which is an unstable saddle point
and the motion is repulsive, accelerated (galloping).
3) If p2 − β

λ2+8
< 0, then equation (10) has no solution and the motion is repulsive, accelerated

(galloping).
Now, we consider the phases space (X,Y ), where X = y, Y = ẏ. According to (6), we have

Γ (ω) :







X = r
[

sinϕ+ λ
4 (1 + cos 2ϕ)

]

Y = rω
(

cosϕ− λ
2 sin 2ϕ

) , with ϕ = ωt.

If ω = ω∗

1, then the trajectory Γ (ω∗

1) is closed, periodic of period T = 2π/ |ω∗

1| (because ϕ = ω∗

1t)
and stable. If ω ∈ (ω∗

1 − ε, ω∗

1 + ε), then the trajectory Γ (ω) admits as a stable limit cycle the curve
Γ (ω∗

1).

Remark 1 The stability point ω∗

1 for the angular speed is negative, because the direction of the gravity

force M~g acting upon the flywheel is opposite to the chosen direction for the Oy-axis. In fact, only

the absolute value of ω∗

1 is of interest to us.

II. Now, we deal with the case when the vibrating mass m is rigidly coupled only with the hardened
elastic force and the damping force, i.e. p = 0. Equation (9) becomes

ω2 =
1

λ2 + 8

[

α

(

5r2λ2

4
+ 6r2

)

− β
]

. (11)

The following situations appear:

1) α > β/
(

5r2λ2

4 + 6r2
)

. In this situation, the nonlinear oscillator is hardened and equation (11) has

two solutions

ω∗

1,2 = ∓
√

1

λ2 + 8

[

α

(

5r2λ2

4
+ 6r2

)

− β
]

By observing that sgnω̇ = sgn
{

ω2 − 1
λ2+8

[

α
(

5r2λ2

4 + 6r2
)

− β
]}

(see (4)), we deduce that ω∗

1 is a

stable attractive point and ω∗

2 is an unstable repulsive point. This means that if we start the motion
with ω0 ∈ (ω∗

1 − ε, ω∗

1 + ε), then ω → ω∗

1 when t→∞, so the flywheel motion becomes stable.
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2) α = β/
(

5r2λ2

4 + 6r2
)

. In this situation, the nonlinear oscillator is hardened, equation (11) has

one solution ω∗

1 = ω∗

2 = 0 which is an unstable saddle point and the motion is repulsive, accelerated
(galloping).

3) 0 < α < β/
(

5r2λ2

4 + 6r2
)

. In this situation, the nonlinear oscillator is hardened, equation (11) has

no solution and the motion is repulsive, accelerated (galloping).
4) α < 0. In this situation, the nonlinear oscillator is weakened, equation (11) has no solution and the
motion is repulsive, accelerated (galloping).

Remark 2 The discussion on the phases space (X,Y ) is similar to case I.

III. Now, we deal with the case when the vibrating mass m is rigidly coupled only with the elastic
force, the hardened elastic force and the damping force, i.e. the general case. Recall equation (9) that
we have to study

ω2 =
1

λ2 + 8

[

p2
(

λ2 + 8
)

+ α

(

5r2λ2

4
+ 6r2

)

− β
]

.

The following situations appear:

1) α >
[

β − p2
(

λ2 + 8
)]

/
(

5r2λ2

4 + 6r2
)

. In this situation, equation (9) has two solutions

ω∗

1,2 = ∓
√

1

λ2 + 8

[

p2 (λ2 + 8) + α

(

5r2λ2

4
+ 6r2

)

− β
]

.

By observing that sgnω̇ = sgn
{

ω2 − 1
λ2+8

[

p2
(

λ2 + 8
)

+ α
(

5r2λ2

4 + 6r2
)

−β]} (see (4)), we deduce

that ω∗

1 is a stable attractive point and ω∗

2 is an unstable repulsive point. This means that if we start
the motion with ω0 ∈ (ω∗

1 − ε, ω∗

1 + ε), then ω → ω∗

1 when t → ∞, so the flywheel motion becomes
stable.
2) α =

[

β − p2
(

λ2 + 8
)]

/
(

5r2λ2

4 + 6r2
)

. In this situation, equation (9) has one solution ω∗

1 = ω∗

2 = 0

which is an unstable saddle point and the motion is repulsive, accelerated (galloping).

3) α <
[

β − p2
(

λ2 + 8
)]

/
(

5r2λ2

4 + 6r2
)

. In this situation, equation (9) has no solution and the motion

is repulsive, accelerated (galloping).

Remark 3 In each one of the three sub-cases, the specification that the nonlinear oscillator is hardened

or weakened depends now on the sign of the expression β − p2
(

λ2 + 8
)

. The discussion on the phases

space (X,Y ) is similar to case I.

3 The study of the speed regulator with two degrees of freedom

We consider a dynamical system similar to the one from Section 2, the difference being that the
viscous damper, the rigid body m and the elastic spring are serially placed (Figure 2(a)). This is the
the Buassa-Sarde model (see [5]). This time, the acting forces are: the gravity force m~g, the damping
force ~Fa = −cẏ~j and the elastic force ~Fe = −k (y − r sinϕ)~j. The motion equation is

mÿ + cẏ + k (y − r sinϕ) = mg ⇔ ÿ + 2nẏ + p2y = g + p2r sinϕ, (12)
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Figure 2: a) The mechanism with two degrees of freedom; b) The graph of f

where 2n = c/m, p2 = k/m, α = k∗/m. Taking into account that the stress in the flywheel wire is
T = M (g −Rϕ̈), its moment is TR, the moment of the elastic force is k (y − r sinϕ) r cosϕ and by
applying the theorem of the kinetic moment, we obtain

MR (g −Rϕ̈) + k (y − r sinϕ) r cosϕ = Iϕ̈. (13)

Note that this system has two degrees of freedom: the displacement y and the rotary angle ϕ.

The statement of problem 2 It is asked to find the angular speed ω = const of the flywheel,

knowing that the flywheel has a uniform motion, i.e. ϕ̇ = ω = const. It is also asked to find the initial

angular speed ω0 of the flywheel in order to have a stable rotation of the flywheel, i.e. ω → const when
t→∞.

In order to solve this problem, we will apply the Van der Pol method: the method of parameters with
slow variation and the constants variation method.
In the absence of the therm p2r sinϕ, g/p2 is a solution of equation (12). Therefore we will seek for a
solution of the type

y = A sin (ϕ+ θ) +
g

p2
, with ϕ̇ = ω, (14)

where A (t), θ (t) are parameters with slow variation and are to be calculated. From (14), we have
ẏ = Ȧ sin (ϕ+ θ) + Aθ̇ cos (ϕ+ θ) + Aω cos (ϕ+ θ). By using the hypothesis of constants variation,
we have

Ȧ sin (ϕ+ θ) +Aθ̇ cos (ϕ+ θ) = 0 (15)

and hence
ẏ = Aω cos (ϕ+ θ) . (16)

From (16) and ω̇ ∼= 0, we have

ÿ = Ȧω cos (ϕ+ θ)−Aωθ̇ sin (ϕ+ θ)−Aω2 sin (ϕ+ θ) . (17)

By replacing (14), (16), (17) into (12), we obtain

Ȧω cos (ϕ+ θ)−Aωθ̇ sin (ϕ+ θ) = Aω2 sin (ϕ+ θ)

−2nAω cos (ϕ+ θ)− p2A sin (ϕ+ θ) + p2r sinϕ. (18)

6
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Relations (15) and (18) constitute a system in unknowns Ȧ, θ̇ which has the solution

Ȧω = A
(

ω2 − p2
)

sin (ϕ+ θ) cos (ϕ+ θ)− 2nAω cos2 (ϕ+ θ)

+p2r sinϕ cos (ϕ+ θ) , (19)

Aωθ̇ = A
(

p2 − ω2
)

sin2 (ϕ+ θ) + 2nAω sin (ϕ+ θ) cos (ϕ+ θ)

−p2r sinϕ sin (ϕ+ θ) . (20)

Similarly, by replacing (14) into (13), we obtain

(

I +MR2
)

ϕ̈ =MgR+ k

[

A sin (ϕ+ θ) +
g

p2
− r sinϕ

]

r cosϕ. (21)

We average the nonlinear equations (19), (20), (21) with respect to ϕ ∈ [0, 2π] and we obtain

{

Ȧω = −nAω − p2r
2 sin θ, Aωθ̇ = A

2

(

p2 − ω2
)

− p2r
2 cos θ,

(

I +MR2
)

ω̇ =MgR+ kAr
2 sin θ.

(22)

The nonlinear system (22) in unknowns A, θ, ω allows us to determine the equilibrium points or the
uniform static regimes of motion. We consider Ȧ ∼= 0, θ̇ ∼= 0, ω̇ ∼= 0 and so A = const, θ = α = const,
ω = const (i.e. the initial values). The system (22) becomes

{

nAω + p2r
2 sinα = 0, A

2

(

p2 − ω2
)

− p2r
2 cosα = 0,

MgR+ kAr
2 sinα = 0.

(23)

We have






tgα = −2nω
p2−ω2 ,

sinα = −2nω√
(p2−ω2)2+4n2ω2

, cosα = p2−ω2√
(p2−ω2)2+4n2ω2

,
(24)

A =
p2r

√

(p2 − ω2)2 + 4n2ω2
, (25)

0 =MgR− kp2r2nω

(p2 − ω2)2 + 4n2ω2
. (26)

By considering the function f (ω) = ω/
[

(

p2 − ω2
)2

+ 4n2ω2
]

, ω ≥ 0, and denotingK = (MgR) /
(

kp2r2n
)

,

equation (26) becomes
f (ω) = K. (27)

In order to solve it, the graph f = f (ω) is plotted on the coordinate system ωOf and the intersection
points between this graph and the straight line f = K are studied (Figure 2(b)).
The following cases appear:
1) If K ∈ (0, fmax), then equation (27) has two solutions 0 < ω∗

1 < ω∗

2 and we derive three regimes of
motion: (a) ω ∈ (0, ω∗

1), (b) ω ∈ (ω∗

1, ω
∗

2), (c) ω ∈ (ω∗

2,∞). Observing that sgnω̇ = sgn [K − f (ω)]

7
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(see (22)), we deduce that ω∗

1 is a stable attractive point and ω∗

2 is an unstable repulsive point. This
means that if we start the motion with ω0 ∈ (ω∗

1 − ε, ω∗

1 + ε), then ω → ω∗

1 when t → ∞, so the
flywheel motion becomes stable.
2) If K = fmax, then equation (27) has one solution ω∗

1 = ω∗

2 which is an unstable saddle point and
the motion is repulsive, accelerated (galloping).
3) If K > fmax, then equation (27) has no solution and the motion is repulsive, accelerated (galloping).
Once we have found the values for ω, θ, A, the general solution of equation (12) can be written using the
special solution (14): y = e−nt (c1 cos δt
+c2 sin δt)+A sin (ωt+ θ)+ g

p2
, where δ =

√

p2 − n2 and c1, c2 can be found from the initial conditions
y0, ẏ0 = v0. We have

ẏ ∼= e−nt [(−nc1 + δc2) cos δt+ (−nc2 − δc1) sin δt] +Aω cos (ωt+ θ) .

By considering to the phases space (X,Y ), with X = y, Y = ẏ, we denote by Ei (i = 1, 2) the ellipses
corresponding to special solutions (14) written for ω = ω∗

i :

Ei :

(

X − g/p2

A (ω∗

i )

)2

+

(

Y

ω∗

iA (ω∗

i )

)2

= 1.

These ellipses become limit cycles: E1-stable limit cycle, E2-unstable limit cycle. If the motion is
started with ω in regimes (a), (b), then the trajectory (X,Y ) will be a spiral line which will tend to
E1 when t → ∞. If the motion is started with ω in regime (c), then the trajectory (X,Y ) will be a
spiral line which will leave E1 when t→∞.

Remark 4 The phenomenon of resonance can also be emphasized herein. For n → 0 and ω → p
the phenomenon of instability is generated because the amplitude A increases. Consequently, the

coincidence zone ω ∼= p must be eliminated and n must be increased.
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