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Abstract

This paper is one of a set of articles dealing with solutions to PDEs or ODEs using the wavelet
- Galerkin method. In order to approximate the solution, a couple of families of coefficients are
need; they occur in wavelet series and the are involved in discretizing differential equations that
represent mathematical-mechanical models. Following some earlier ideas (see Reference list), we
have achieved several algorithms and MATLAB - based programs allowing to obtain high precision
results for the necessary functionals. Here it is described the MATLAB evaluation of the integral

Ωm,n
j,k (x) =

∫ x

0

Φ(y) Φ(m) (y − j) Φ(n) (y − k) dy.

1 Introduction

Using some results due to Prof. Ingrid Daubechies (Princeton University, USA) regarding the determi-
nation of an orthonormal basis of functions with compact support on L2 (R) [1], the team led by Prof.
Chen (National Cheng Kung University of Taiwan) has proposed in [2] some algorithms for calculating
seven functionals that occur in wavelet - Galerkin discretization of differential equations. In our paper
we present the algorithms and programs needed for the calculation of one of these functionals, namely

Ωm,n
j,k (x) =

∫ x

0
Φ (y) Φ(m) (y − j) Φ(n) (y − k) dy. (1)

using the programming environment MATLAB. In expression (1), j, k ∈ Z, m,n ∈ N
∗ and Φ(n) (u)

denotes the n-order derivative of function Φ. We will calculate the coefficients Ωm,n
j,k (5).

2 Calculation of coefficients Ωm,n
j,k

Each member of the family of wavelets built by Daubechies is governed by a set of L (an integer
number) coefficients {pk : k = 0, 1, . . . , L− 1} and two functions Φ (x) and Ψ (x).
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The function Φ (x), called the scalar or waveleted function is defined on [0, L− 1] and it has the
expression

Φ (x) =
L−1
∑

j=0

pjΦ (2x− j) .

The function Ψ (x), called wavelet-mother, is defined on [1− L/2, L/2] and its expression is

Ψ (x) =

1
∑

j=2−L

(−1)j p1−jΦ (2x− j) .

The Daubechies filtration coefficients pk, k = 0, L− 1 for L = 6 are the following:

p0 =
1 +

√
10 +

√

5 + 2
√
10

16
, p1 =

1 +
√
10 + 3

√

5− 2
√
10

16
,

p2 =
10− 2

√
10 + 2

√

5 + 2
√
10

16
, p3 =

10− 2
√
10− 2

√

5 + 2
√
10

16
,

p4 =
5 +

√
10− 3

√

5 + 2
√
10

16
, p5 =

1 +
√
10−

√

5 + 2
√
10

16
.

It can be seen that the equation
5

∑

k=0

pk = 2 is satisfied. We are going to calculated Ω
m,n
j,k (x) for x = 5,

L = 6, m = 0, n = 1 and −4 ≤ j, k ≤ 4. Ωm,n
j,k (x) plays an important role in the numerical solution

of nonlinear differential equations by the wavelet - Galerkin method, according to the assertion and
the example given by A. Latto and E. Tenenbaum, ”Les ondelettes a support compact et la solution
numerique de l’equation de Burgers”, C. R. Acad. Sci. Paris, 311, 903-909 (1990). In the paper
”The evaluation of connection coefficients of compactly supported wavelets” authored by A. Latto,
H. L. Resnikoff and E. Tenenbaum and published in Proc. French - USA Workshop on wavelets
and Turbulence, Y. Maday (ed.), the coefficient Ωm,n

j,k (x) is called the third coefficient of wavelets
connection.
The coefficients Ωm,n

j,k (x) have the following properties:

Ωm,n
j,k (x) = 0 for |j| , |k| , or |j − k| ≥ L− 1, (2)

Ωm,n
j,k (x) = 0 for x− j, x− k, or x ≤ 0, (3)

Ωm,n
j,k (x) = Ω

m,n
j,k (L− 1) for x− j, x− k, or x ≥ L− 1. (4)

In equation (113) of [2] we will take −4 ≤ j, k ≤ 4 and, taking into account formulas (2)− (4) we will
obtain a homogeneous system in the unknowns Ωm,n

j,k (x) with m = 0 and n = 1. Equation (113) of [2]
has the forms

Ωm,n
j,k (x) = 2

m+n−1
L−1
∑

ia=0

L−1
∑

ib=0

L−1
∑

ic=0

piapibpicΩ
m,n
2j+ib−ia,2k+ic−ia

(2x− ia) . (5)
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We have a system with 3L2 − 9L+ 7 unknowns Ωm,n
j,k (L− 1). We obtain, from equation (5) a homo-

geneous system of the form
v = 21−m−nSv. (6)

where

v = [v2−L, v3−L, . . . , vL−2]
T , (7)

vj =
[

Ωm,n
j,α (L− 1) , Ω

m,n
j,α+1 (L− 1) , . . . , Ω

m,n
j,β (L− 1)

]

, (8)

α = max (j + 2− L, 2− L), β = min (j + L− 2, L− 2), and the entries of matrix S are sums of
products of the form piapibpic . Since x = 5, m = 0 and n = 1, we denote the unknown by Ωj,k.
The unknowns of system are: Ω−4,−4; Ω−4,−3; Ω−4,−2; Ω−4,−1; Ω−4,0; Ω−3,−4; Ω−3,−3; Ω−3,−2; Ω−3,−1;
Ω−3,0; Ω−3,1; Ω−2,−4; Ω−2,−3; Ω−2,−2; Ω−2,−1; Ω−2,0; Ω−2,1; Ω−2,2; Ω−1,−4; Ω−1,−3; Ω−1,−2; Ω−1,−1;
Ω−1,0; Ω−1,1; Ω−1,2; Ω−1,3; Ω0,−4; Ω0,−3; Ω0,−2; Ω0,−1; Ω0,0; Ω0,1; Ω0,2; Ω0,3; Ω0,4; Ω1,−3; Ω1,−2; Ω1,−1;
Ω1,0; Ω1,1; Ω1,2; Ω1,3; Ω1,4; Ω2,−2; Ω2,−1; Ω2,−0; Ω2,1; Ω2,2; Ω2,3; Ω2,4; Ω3,−1; Ω3,0; Ω3,1; Ω3,2; Ω3,3;
Ω3,4; Ω4,0; Ω4,1; Ω4,2; Ω4,3; Ω4,4.
Taking j = −4 and k = −4 in equation (5) and taking into account (2)− (4) we obtain

Ω−4,−4 = (p0p4p4 + p1p5p5) Ω−4,−4 + p0p4p5Ω−4,−3 + p0p5p4Ω−3,−4 + p0p5p5Ω−3,−3.

It follows that

s11 = p0p4p4 + p1p5p5, s12 = p0p4p5, s13 = p0p5p4, s14 = p0p5p5;

the remaining entries on the first row being equal to zero.
Similarly, if we consider j = −4 and k = −3 in formula (5) we have

Ω−4,−3 = (p0p4p2 + p1p5p3) Ω−4,−4 + (p1p5p4 + p0p4p3) Ω−4,−3+

+ (p0p4p4 + p1p5p5) Ω−4,−2 + p0p4p5Ω−4,−1 + p0p5p2Ω−3,−4+

+ p0p5p3Ω−3,−3 + p0p5p4Ω−3,−2 + p0p5p5Ω−3,−1.

It follows that

s21 = p0p4p2 + p1p5p3, s22 = p1p5p4 + p0p4p3,

s23 = p0p4p4 + p1p5p5, s24 = p0p4p5, s25 = 0,

s26 = p0p5p2, s27 = p0p5p3, s28 = p0p5p4, s29 = p0p5p5;

the remaining entries in the second row are = 0. Following this procedure, the matrix S is generated:

% The generate matrix omega

clc

p1=0.47046720778416;

p2=1.14111691583144;

p3=0.65036500052623;
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p4=-0.19093441556833;

p5=-0.12083220831040;

p6=-0.04981749973688;

a=[-4 -4 -4 -4 -4 -3 -3 -3 -3 -3 -3 -2 -2 -2 -2 -2 -2 -2 -1 ...

-1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 ...

2 2 2 2 3 3 3 3 3 3 4 4 4 4 4];

b=[-4 -3 -2 -1 0 -4 -3 -2 -1 0 1 -4 -3 -2 -1 0 1 2 -4 -3 -2 ...

-1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4 -2 -1 0 ...

1 2 3 4 -1 0 1 2 3 4 0 1 2 3 4];

L=6;

s=zeros(61);

for r=1:61

j=a(r);

k=b(r);

for ia=1:L

for ib=1:L

for ic=1:L

jj=2*j+ib-ia;

kk=2*k+ic-ia;

for t=1:61

if ((jj==a(t))&(kk==b(t))

q=t;

s(r,q)=s(r,q)+p(ia)*p(ib)*p(ic);

break

end

end

end

end

end

end

[vp,dp]=eig(s)

The matrix S has the eigenvalues 21−k, k = 0, 1, . . . , L− 2 with the multiplicity order k + 1.
It can be seen from (6) that v is an eigenvector corresponding to the eigenvalue 2m+n−1. In our case
v is the solution corresponding to the eigenvalue 1 with the multiplicity order two. It follows that we
cannot determine a unique solution from (6).
In order to determine a solution to system (6) we attach the equations resulting from the equation of
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moments (formulas (117) and (118) of [2]), namely

−4Ω−4,−4 − 3Ω−4,−3 − 2Ω−4,−2 − 1 · Ω−4,−1 + 0 · Ω−4,0 = Γ0
−4

−4Ω−3,−4 − 3Ω−3,−3 − 2Ω−3,−2 − 1 · Ω−3,−1 + 0 · Ω−3,0 + 1 · Ω−3,1 = Γ0
−3

−4Ω−2,−4 − 3Ω−2,−3 − 2Ω−2,−2 − 1 · Ω−2,−1 + 0 · Ω−2,0 + 1 · Ω−2,1+
+2Ω−2,2 = Γ0

−2

−4Ω−1,−4 − 3Ω−1,−3 − 2Ω−1,−2 − 1 · Ω−1,−1 + 0 · Ω−1,0 + 1 · Ω−1,1+
+2Ω−1,2 + 3Ω−1,3 = Γ0

−1

−4Ω0,−4 − 3Ω0,−3 − 2Ω0,−2 − 1 · Ω0,−1 + 0 · Ω0,0 + 1 · Ω0,1 + 2Ω0,2+
+3Ω0,3 + 4Ω0,4 = Γ0

0

−3Ω1,−3 − 2Ω1,−2 − 1 · Ω1,−1 + 0 · Ω1,0 + 1 · Ω1,1 + 2Ω1,2 + 3Ω1,3+
+4Ω1,4 = Γ0

1

−2Ω2,−2 − 1 · Ω2,−1 + 0 · Ω2,0 + 1 · Ω2,1 + 2Ω2,2 + 3Ω2,3 + 4Ω2,4 = Γ0
2

−1 · Ω3,−1 + 0 · Ω3,0 + 1 · Ω3,1 + 2Ω3,2 + 3Ω3,3 + 4Ω3,4 = Γ0
3

0 · Ω4,0 + 1 · Ω4,1 + 2Ω4,2 + 3Ω4,3 + 4Ω4,4 = Γ0
4

Ω−4,−4 +Ω−3,−4 +Ω−2,−4 +Ω−1,−4 +Ω0,−4 = Γ1
−4

Ω−4,−3 +Ω−3,−3 +Ω−2,−3 +Ω−1,−3 +Ω0,−3 +Ω1,−3 = Γ1
−3

Ω−4,−2 +Ω−3,−2 +Ω−2,−2 +Ω−1,−2 +Ω0,−2 +Ω1,−2 +Ω2,−2 = Γ1
−2

Ω−4,−1 +Ω−3,−1 +Ω−2,−1 +Ω−1,−1 +Ω0,−1 +Ω1,−1 +Ω2,−1 +Ω3,−1 = Γ1
−1

Ω−4,0 +Ω−3,0 +Ω−2,0 +Ω−1,0 +Ω0,0 +Ω1,0 +Ω2,0 +Ω3,0 +Ω4,0 = Γ1
0

Ω−3,1 +Ω−2,1 +Ω−1,1 +Ω0,1 +Ω1,1 +Ω2,1 +Ω3,1 +Ω4,1 = Γ1
1

Ω−2,2 +Ω−1,2 +Ω0,2 +Ω1,2 +Ω2,2 +Ω3,2 +Ω4,2 = Γ1
2

Ω−1,3 +Ω0,3 +Ω1,3 +Ω2,3 +Ω3,3 +Ω4,3 = Γ1
3

Ω0,4 +Ω1,4 +Ω2,4 +Ω3,4 +Ω4,4 = Γ1
4

The numbers Γ0
−4,Γ

0
−3,Γ

0
−2, . . . ,Γ

1
4 are known.

The attachment of these equations to system (6) is accomplished after the elimination of the rows
corresponding to the unknowns Ω−4,0, Ω−3,0 and Ω0,0. The replacement of the rather difficult; the
obtained solution must satisfy the conditions (117) and (118) of [2].

% Program for determinate solution

for i=1:61

for j=1:61

if i==j

s(i,j)=-1+s(i,j)

end

end

end

s(5,1:4)=[-4 -3 -2 -1]; s(5,5:61)=0;
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s(10,1:5)=0; s(10,6:11)=[-4 -3 -2 -1 0 1]; s(10,12:61)=0;

% s(31,1:11)=0; s(31,12:18)=[-4 -3 -2 0 1 2]; s(31,20:61)=0;

rang=rank(s)

dets=det(s);

d=zeros(61,1);

d(5,1)=-0.34246575e-3;

d(10,1)=-0.14611872e-1;

% d(31,1)=0.14520548;

format long

sol=s\d

The solution thus obtained has a higher accuracy than the one of [2]
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