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Decomposition of Waveguides Propagating

in Piezoelectric Crystals subject to Initial Fields

Olivian Simionescu-Panait∗

The present paper deals with the study of the coupling conditions for propagation of

planar guided waves in a piezoelectric semi-infinite plane (sagittal plane) subject to initial

fields. The piezoelectric material behaves linearly and without attenuation and the waveguide

propagates in a normal mode. We suppose that the material is subject to initial electro-

mechanical fields. If the sagittal plane is normal to a direct, resp. inverse dyad axis, we

derive that the fundamental equations’ system decomposes for particular choices of the

initial electric field. In this way we obtain mechanical and piezoelectric waves generalizing

the classical guided waves from the case without initial fields.

1. Introduction

The problems related to electroelastic materials subject to incremental fields
superposed on initial mechanical and electric fields have attracted considerable at-
tention last period, due their complexity and to multiple applications (see papers
[2, 3, 6, 20, 21, 22]). The basic equations of the theory of piezoelectric bodies subject
to infinitesimal deformations and fields superposed on initial mechanical and electric
fields, were established by Eringen and Maugin in their monograph [4].

In [1] the fundamental equations for piezoelectric crystals subject to initial fields
have been re-established and important results concerning the dynamic and static
local stability conditions of such media were obtained. In particular, the problem of
plane wave propagation in piezoelectric crystals subject to initial fields was considered
there. Soós and Simionescu studied in [18] the case of plane wave free propagation
in 6-mm type crystals subject to initial fields. This case is important, due to its
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complexity from theoretical point of view, and its practical applications. In [8, 9] we
obtained for 6-mm type crystals the plane wave velocities in closed form, analyzed the
directions of polarization, defined new electro-mechanical coupling coefficients, and
demonstrated the influence of initial fields on the shape of slowness surfaces. In [10] we
studied the electrostrictive effect on plane wave propagation in isotropic solids subject
to initial fields. In [11] we investigated the conditions of propagation of plane waves
in cubic crystals subject to initial deformations and electric fields. We generalized
the previous results, studying the problem of attenuated wave free propagation in an
isotropic solid subject to initial electro-mechanical fields (see [12, 15]). Recent results
on attenuated wave propagation along an edge, resp. on a face of a cubic crystal,
subject to initial fields, are described in [13, 14, 16, 17]. Our results generalize, in a
significant manner, the classical results presented in [5, 7, 19].

This paper deals with the study of the coupling conditions for propagation of
planar guided waves in a piezoelectric semi-infinite plane (called sagittal plane). The
piezoelectric material behaves linearly and without attenuation and the waveguide
propagates in a normal mode. We suppose that the material is subject to initial
electro-mechanical fields having small intensity. If the sagittal plane is normal to a
direct, resp. inverse dyad axis (i.e. the crystal is monoclinic in the class 2, resp. in the
class m), we show that the fundamental system of equations decomposes for particular
choices of the initial electric field. In this way we obtain mechanical and piezoelectric
waves generalizing the classical guided waves from the case without initial fields (in
particular, the Bleustein-Gulyaev wave).

2. Fundamental equations. Geometric hypotheses

The basic equations of piezoelectric bodies for infinitesimal deformations and
fields superposed on initial deformations and electric fields were given by Eringen
and Maugin in their monograph [4]. An alternate derivation of these equations was
obtained by Baesu, Fortuné and Soós in [1].

We assume the material to be an elastic dielectric, which is nonmagnetizable
and conducts neither heat, nor electricity. We shall use the quasi-electrostatic ap-
proximation of the equations of balance. Furthermore, we assume that the elastic
dielectric is linear and homogeneous, that the initial homogeneous deformations are
infinitesimal and that the initial homogeneous electric field has small intensity. To
describe this situation we use three different configurations : the reference configu-
ration BR in which at time t = 0 the body is undeformed and free of all fields; the

initial configuration
◦

B in which the body is deformed statically and carries the ini-

tial fields; the present (current) configuration Bt obtained from
◦

B by applying time
dependent incremental deformations and fields. In what follows, all the fields related

to the initial configuration
◦

B will be denoted by a superposed “◦”.
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In this case the homogeneous field equations take the following form:

◦

ρ ü = div Σ, div ∆ = 0,

rot e = 0 ⇔ e = −grad ϕ,

(1)

where
◦

ρ is the mass density, u is the incremental displacement from
◦

B to Bt, Σ

is the incremental mechanical nominal stress tensor, ∆ is the incremental electric
displacement vector, e is the incremental electric field and ϕ is the incremental electric
potential. All incremental fields involved into the above equations depend on the
spatial variable x and on time t.

We suppose the following incremental constitutive equations:

Σkl =
◦

Ωklmn um,n+
◦

Λmkl ϕ, m

∆k =
◦

Λkmn un,m+
◦

ǫkl el =
◦

Λkmn un,m−
◦

ǫkl ϕ, l.

(2)

In these equations
◦

Ωklmn are the components of the instantaneous elasticity

tensor,
◦

Λkmn are the components of the instantaneous coupling tensor and
◦

ǫkl are
the components of the instantaneous dielectric tensor. The instantaneous coefficients
can be expressed in terms of the classical moduli of the material and on the initial
applied fields as follows:

◦

Ωklmn=
◦

Ωnmlk= cklmn+
◦

Skn δlm − ekmn

◦

El −enkl

◦

Em −ηkn

◦

El

◦

Em,

◦

Λmkl= emkl + ηmk

◦

El,
◦

ǫkl=
◦

ǫlk= δkl + ηkl,

(3)

where cklmn are the components of the constant elasticity tensor, ekmn are the com-
ponents of the constant piezoelectric tensor, ǫkl are the components of the constant

dielectric tensor,
◦

Ei are the components of the initial applied electric field and
◦

Skn

are the components of the initial applied symmetric (Cauchy) stress tensor.
From the previous field and constitutive equations we obtain the following fun-

damental system of equations:

◦

ρ ül =
◦

Ωklmn um,nk+
◦

Λmkl ϕ,mk,
◦

Λkmn un,mk−
◦

ǫkn ϕ,nk = 0, l = 1, 3. (4)

In what follows we shall describe the geometric hypotheses for our problem. The
crystal is assumed to be semi-infinite, occupying the region x2 > 0, and the waves are
supposed to propagate along x1 axis. The plane x1x2 containing the surface normal
and the propagation direction is called sagittal plane. Furthermore, we suppose that
the guide of waves has the properties invariant with time t and with x1 variable. In
these conditions, if the material behaves linearly and without attenuation, the normal
modes will have the form:

uj(x, t) = u0

j(x2, x3)exp[i(ωt − px1)], j = 1, 4. (5)
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Here u1, u2, u3 are the mechanical displacements, while u4 stands for the electric
potential ϕ. In the previous relations p represents the wave number, ω defines the
frequency of the wave and i2 = −1. Using these hypotheses the equations (4) become:

◦

Ωklmn um,nk+
◦

Λmkl ϕ,mk = −
◦

ρ ω2ul,
◦

Λkmn un,mk =
◦

ǫkn ϕ,nk, l = 1, 3. (6)

We define the non-dimensional variable X2 = px2 and we neglect the effects of
diffraction in x3 direction, so that ∂/∂x3 = 0. From the other hypotheses it yields
the derivation rules ∂/∂x1 = −ip and ∂/∂x2 = p∂/∂X2. Finally, we introduce the
phase velocity of the guided wave as V = ω/p.

3. The study of coupling conditions for waveguide propa-

gation

To analyze the coupling of plane waveguide, using the previous hypotheses, we
introduce the differential operators with complex coefficients, as follows:

◦

Γil=
◦

Ωi11l −
◦

Ωi22l

∂2

∂X2

2

+ i(
◦

Ωi12l +
◦

Ωi21l)
∂

∂X2

,

◦

γl=
◦

Λ11l −
◦

Λ22l

∂2

∂X2

2

+ i(
◦

Λ12l +
◦

Λ21l)
∂

∂X2

,

◦

ǫ=
◦

ǫ11 −
◦

ǫ22
∂2

∂X2

2

+ 2i
◦

ǫ12
∂

∂X2

.

(7)

In these conditions, after a lengthy, but elementary calculus, we obtain that the
differential system (6) has the following form:













◦

Γ11 −
◦

ρ V 2
◦

Γ12

◦

Γ13

◦

γ
1

◦

Γ12

◦

Γ22 −
◦

ρ V 2
◦

Γ23

◦

γ
2

◦

Γ13

◦

Γ23

◦

Γ33 −
◦

ρ V 2
◦

γ
3

◦

γ
1

◦

γ
2

◦

γ
3 −

◦

ǫ





















u1

u2

u3

u4









= 0. (8)

Here the coefficients are defined by relations (7). The system (8) is a homogeneous
differential system of four equations with four unknowns, i.e. the components of the
mechanical displacement and the electric potential, having as coefficients complex
differential operators in non-dimensional variable X2. It generalizes the similar system
from the case without initial fields, derived in [7].

In what follows we shall analyze the coupling conditions of the guided plane
wave propagation in two particular cases.

3.1. Sagittal plane normal to a direct axis of order two

In this case, we suppose that the sagittal plane x1x2 is normal to a dyad axis
(x3 in our case). Then, the elastic constants with one index equal to 3 are zero (see



Decomposition of waveguides 195

[7] for details). After a short inspection of the coefficients of the system (8), using
Voigt convention, we find:

◦

Γ13= −[e15 + i(e14 + e25)
∂

∂X2

− e24

∂2

∂X2

2

]
◦

E1 −[η11 + 2iη12

∂

∂X2

− η22

∂2

∂X2

2

]
◦

E1

◦

E3,

◦

Γ23= −[e15 + i(e14 + e25)
∂

∂X2

− e24

∂2

∂X2

2

]
◦

E2 −[η11 + 2iη12

∂

∂X2

− η22

∂2

∂X2

2

]
◦

E2

◦

E3 .

(9)

We can easily observe that
◦

Γ13 and
◦

Γ23 does not depend on the initial stress field

components, but on the initial electric field components, only. Thus,
◦

Γ13=
◦

Γ23= 0 if
◦

E1=
◦

E2= 0.
Moreover, if we suppose that the dyad axis is direct (this means that the sagittal

plane is normal to a direct axis of order two), it follows that the crystal belongs to the
class 2 of the monoclinic system (A2 || x3). In this particular case the piezoelectric
constants with no index equal to 3 are zero (as described in [7]). Therefore, we obtain:

◦

γ
1= (η11 + 2iη12

∂

∂X2

− η22

∂2

∂X2
2

)
◦

E1,
◦

γ
2= (η11 + 2iη12

∂

∂X2

− η22

∂2

∂X2
2

)
◦

E2 . (10)

So, we obtain that
◦

γ
1=

◦

γ
2= 0 if

◦

E1=
◦

E2= 0.
In conclusion, we derive the following result concerning the decomposition of

the fundamental system (8).

If the axis x3 is a direct dyad axis and if
◦

E1=
◦

E2= 0, the system (8) reduces to
two independent subsystems, as follows:

• The first subsystem:

(

◦

Γ11 −
◦

ρ V 2
◦

Γ12

◦

Γ12

◦

Γ22 −
◦

ρ V 2

)

(

u1

u2

)

= 0. (11)

It defines a non-piezoelectric guided wave, polarized in the sagittal plane x1x2,

which depends on the initial stress field, only. We shall denote it by
◦

P 2. These
characterizations are due to the form of the involved coefficients:

◦

Γ11= c11+
◦

S11 +2i(c16+
◦

S12)
∂

∂X2

− (c66+
◦

S22)
∂2

∂X2
2

,

◦

Γ12= c16 + i(c12 + c66)
∂

∂X2

− c26

∂2

∂X2

2

,

◦

Γ22= c66+
◦

S11 +2i(c26+
◦

S12)
∂

∂X2

− (c22+
◦

S22)
∂2

∂X2

2

.

(12)



196 Olivian Simionescu-Panait

• The second subsystem:
(

◦

Γ33 −
◦

ρ V 2
◦

γ
3

◦

γ
3 −

◦

ǫ

)

(

u3

u4

)

= 0. (13)

It has as solution a transverse-horizontal wave, with polarization after the axis x3,
which is piezoelectric and electrostrictive active, and depends on the initial mechanical

and electrical fields. It is denoted by
◦

TH and generalizes the famous Bleustein-
Gulyaev wave (see [7], to compare). The components involved into this equation have
the form:

◦

Γ33= c55+
◦

S11 +2i(c45+
◦

S12)
∂

∂X2

− (c44+
◦

S22)
∂2

∂X2

2

−2[e15 + i(e14 + e25)
∂

∂X2

− e24

∂2

∂X2

2

]
◦

E3 −[η11 + 2iη12

∂

∂X2

− η22

∂2

∂X2

2

]
◦

E
2

3
,

◦

γ
3= e15 + i(e14 + e25)

∂

∂X2

− e24

∂2

∂X2

2

+ [η11 + 2iη12

∂

∂X2

− η22

∂2

∂X2

2

]
◦

E3,

◦

ǫ=
◦

ǫ11 +2i
◦

ǫ12
∂

∂X2

−
◦

ǫ22
∂2

∂X2

2

= 1 + η11 + 2iη12

∂

∂X2

− (1 + η22)
∂2

∂X2

2

.

(14)

3.2. Sagittal plane parallel to a mirror plane

We suppose now that the sagittal plane x1x2 is normal to an inverse dyad axis
(x3 in our case) or, equivalently, if the sagittal plane is parallel to a mirror plane M .
It follows that the crystal belongs to the class m of the monoclinic system (M ⊥ x3).
In this particular case the elastic constants with one index equal to 3 are zero, as
well as the piezoelectric constants with one index equal to 3, which vanish (see [7] for
details).

Analyzing the coefficients of the system (8) in this case, we find:

◦

Γ13= −[e11 + i(e21 + e16)
∂

∂X2

− e26

∂2

∂X2
2

]
◦

E3 −[η11 + 2iη12

∂

∂X2

− η22

∂2

∂X2
2

]
◦

E1

◦

E3,

◦

Γ23= −[e16 + i(e26 + e12)
∂

∂X2

− e22

∂2

∂X2

2

]
◦

E3 −[η11 + 2iη12

∂

∂X2

− η22

∂2

∂X2

2

]
◦

E2

◦

E3,

◦

γ
3= (η11 + 2iη12

∂

∂X2

− η22

∂2

∂X2
2

)
◦

E3 .

(15)

It yields that
◦

Γ13=
◦

Γ23= 0 and
◦

γ
3= 0 if

◦

E3= 0.

Thus, if the axis x3 is an inverse dyad axis and if
◦

E3= 0, the fundamental
system (8) splits into two parts, as follows.
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• The first subsystem has the form:








◦

Γ11 −
◦

ρ V 2
◦

Γ12

◦

γ
1

◦

Γ12

◦

Γ22 −
◦

ρ V 2
◦

γ
2

◦

γ
1

◦

γ
2 −

◦

ǫ













u1

u2

u4



 = 0. (16)

It has as solution a guided wave with sagittal plane polarization, associated with
the electric field (via the electric potential u4 = ϕ), providing piezoelectric and
electrostrictive effects, and depending on the initial stress and electric fields.

It is denoted by
◦

P 2. The electric field, associated with this wave, is contained
in the sagittal plane, since E3 = ∂ϕ/∂x3 = 0. This fact is consistent with the

hypothesis
◦

E3= 0. These features of
◦

P 2 wave are obtained from the analysis
of the corresponding coefficients:

◦

Γ11= c11+
◦

S11 −2e11

◦

E1 −η11

◦

E
2

1 +2i[c16+
◦

S12 −(e16 + e21)
◦

E1 −η12

◦

E
2

1]
∂

∂X2

−(c66+
◦

S22 −2e26

◦

E1 −η22

◦

E
2

1
)

∂2

∂X2
2

,

◦

Γ12= c16 − e16

◦

E1 −e11

◦

E2 −η11

◦

E1

◦

E2 +i[c12 + c66 − (e12 + e26)
◦

E1

−(e21 + e16)
◦

E2 −2η12

◦

E1

◦

E2]
∂

∂X2

− (c26 − e22

◦

E1 −e26

◦

E2 −η22

◦

E1

◦

E2)
∂2

∂X2
2

,

◦

Γ22= c66+
◦

S11 −2e16

◦

E2 −η11

◦

E
2

2
+2i[c26+

◦

S12 −(e26 + e12)
◦

E2 −η12

◦

E
2

2
]

∂

∂X2

−(c22+
◦

S22 −2e22

◦

E2 −η22

◦

E
2

2)
∂2

∂X2

2

,

(17)
respectively:

◦

γ
1= e11 + η11

◦

E1 +i(e16 + e21 + 2η12

◦

E1)
∂

∂X2

− (e26 + η22

◦

E1)
∂2

∂X2
2

,

◦

γ
2= e16 + η11

◦

E2 +i(e12 + e26 + 2η12

◦

E2)
∂

∂X2

− (e22 + η22

◦

E2)
∂2

∂X2

2

,

◦

ǫ=
◦

ǫ11 +2i
◦

ǫ12
∂

∂X2

−
◦

ǫ22
∂2

∂X2
2

= 1 + η11 + 2iη12

∂

∂X2

− (1 + η22)
∂2

∂X2
2

.

(18)

• The second subsystem reduces to a single equation, as follows:

(
◦

Γ33 −
◦

ρ V 2)u3 = 0. (19)
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Its root corresponds to a transverse-horizontal wave, non-piezoelectric, and

influenced by the initial stress field, only. It is called
◦

TH wave. In this equation:

◦

Γ33= c55+
◦

S11 +2i(c45+
◦

S12)
∂

∂X2

− (c44+
◦

S22)
∂2

∂X2
2

. (20)

In conclusion, in this paper we studied the coupling conditions for propagation
of planar guided waves in a piezoelectric semi-infinite plane (i.e. sagittal plane).
If the sagittal plane is normal to a direct, resp. inverse dyad axis, we derive that
the fundamental equations’ system decomposes for particular choices of the initial
electric field. In this way we obtain mechanical and piezoelectric waves generalizing
the classical guided waves from the case without initial fields. These results will
help us to determine the corresponding boundary conditions and to derive the guided
waves velocities.
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