Back
Research Papers
1.

Limiting conditional probabilities for denumerable Markov chains. Proceedings of the Fourth Conference on Probability Theory (Brasov, 1971), pp. 121–128. Editura Acad. R. S. R., Bucharest, 1973 
2.

Quasistationary distributions for continuoustime Markov processes with a denumerable set of states. Rev. Rumaine Math. Pures Appl. 17 (1972), 1013–1023 
3.

On quasistationary distributions for multi  type Galton Watson processes. J. Appl. Probability, 12, 1975, 6068. 
4.

A mathematical model for the study of viral hepatitis. Rev. Roum. Virousologie, 28 (1976), 3856. 
5.

On local times for nonhomogeneous Markov processes. Z. Wahrsch. Verw. Gebiete, 53 (1980), 175182. 
6.

Representation of excessive functions as potentials of additive functionals for regular Markov processes, Teor. Veroyatnost. i Primenen, 6 (1981), no. 2, 392394. 
7.

Supermeanvalued functions for regular Markov processes, Rev. Rumaine Math. Pures Appl. 27 (1982), no. 7, 731–735. 
8.

Topological structures of the phase space of a regular Markov process, Studies in probability and related topics, 61–64, Nagard, Rome, 1983. 
9.

Changes of time associated with nonhomogeneous regular Markov processes, Proceedings of the seventh conference on probability theory (Brasov, 1982), 413–418, VNU Sci. Press, Utrecht, 1985 
10.

On irreducibility of general Markov processes, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 865–872. 
11.

Ergodic properties of λrecurrent Markov processes, Stud. Cerc. Mat. 41 (1980), no. 6, 455–460. 
12.

On excessive irreducibility measures, Rev. Roumaine Math. Pures Appl. 37 (1992), no. 10, 839–846. 
13.

The class structure of φirreducible Markov processes, Stud. Cerc. Mat. 45 (1993), no. 2, 113–117. 
14.

Some aspects of ergodicity and recurrence relative to a conservative measure, Rev. Roumaine Math. Pures Appl. 40 (1995), no. 56, 421–433. 
15.

Some remarks on the property of mergodicity, Rev. Roumaine Math. Pures Appl. 41 (1996), no. 12, 1–3. 
16.

Ergodicity of timechanged processes, Rev. Roumaine Math. Pures Appl. 43 (1998), no. 34, 309–315. 
17.

Some properties of excessive measures relative to multiplicative functionals, Rev. Roumaine Math. Pures Appl. 44 (1999), no.1, 5–13. 
18.

On essentially irreducible Markov processes, Rev. Roumaine Math. Pures Appl. 46 (2001), no.5, 571–581. 
19.

A note on essentially irreducible processes, Rev. Roumaine Math. Pures Appl. 48 (2003), no. 2, 135–141. 
20.

Exponential decay parameters associated with excessive measures. Séminaire de Probabilités XXXVIII, 135–144, Lecture Notes in Math. 1857, Springer, Berlin, 2005. 
21.

Harris recurrence of a Markov process on an absorbing set, Rev. Roumaine Math. Pures Appl. 50 (2005), no. 3, 253–259. 
22.

Asymptotic properties for a class of transient Feller processes, Bulletin of the International Statistical Institute, vol. LXII, Proceedings of the 56^{th} Session of the ISI, 2229 august, Lisbone 2007 ISBN: 9789726739920,/papers/836.pdf 
23.

Feller processes with fast explosion, Rev. Roumaine Math. Pures Appl. 52 (2007), no. 6, 631–638. 
24.

On Tweedie's construction of an invariant measure, Rev. Roumaine Math. Pures Appl. 55 (2010), no. 5, 369–373 
25.

Iterated integrated tail with periodic hazard rate, Math. Reports 13 (63), no. 2 (2011), 127139 (with Viorel Petrehus and Gheorghita Zbaganu). 
26.

On large deviations lower bounds for simultaneously irreducible Feller processes, Rev. Roumaine Math. Pures Appl. 58 (2013), no. 2, 163–173. 
27.

Quasistationary distributions: an application of the revival technique, Rev. Roumaine Math. Pures Appl, 60 (2015) pp. 9399 
28.

Uniformly integrable potential operators and the existence of quasistationary distributions, Annals of the University of Craiova – Mathematics and Computer Science Series, (Special Issue) 43, (2016), no.1, pp. 2126. Dedicated to Marius Iosifescu on the occasion of his 80th anniversary. 
29.

On excessive and subinvarint measures for regular step processes (submitted) 