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The velocity field and the shear stress corresponding to the motion of an Oldroyd-
B fluid due to an infinite circular cylinder subject to a longitudinal time-dependent
shear stress are established by means of Hankel transforms. The exact solutions,
presented under series form, can be easy specialized to give the similar solutions
for Maxwell, second grade and Newtonian fluids performing the same motion.
Finally, some characteristics of the motion as well as the influence of the material
parameters on the behavior of the fluid are shown by graphical illustrations.
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1. INTRODUCTION

Navier-Stokes equations can well describe the flow of Newtonian fluids.
However, there are many fluids with complex microstructure, such as biological
fluids, polymeric liquids, suspensions, liquid crystals in industrial processes,
with non-linear viscoelastic behaviuor that cannot be described by these equa-
tions. Recently, the interest in motion problems of non-Newtonian fluids has
considerably grown due to their multiple applications. Among the many mo-
dels that have been used to describe their behaviour, the rate type models
have received much attention. The first systematic thermodynamic study of
these models is that of Rajagopal and Srinivasa [15], within which models for
a variety of rate type viscoelastic fluids can be obtained. Among them the
Oldroyd-B model seems to be more amenable to analysis and more impor-
tantly experimental. As a result of their wide implications, a lot of papers
regarding these fluids have been recently published [2, 5–13, 17, 20].

However, it is worth pointing out that in all these papers the authors
studied motions for which the velocity field is given on the boundary. The first
exact solutions corresponding to motions of non-Newtonian fluids for which
the shear stress is given on the boundary seem to be those of Bandelli and
Rajagopal [3] for cylindrical domains. Recently, new exact solutions for sim-
ilar problems have been established in [1] and [14] for Newtonian and second
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grade fluids and in [18] and [19] for Oldroyd-B fluids with fractional derivatives.
However, the results of the last two mentioned papers have a meaningful draw-
back. The authors claim to study motions due to longitudinal or rotational
constant shears on the boundary. Unfortunately, their boundary conditions
(28) from [18] and (31) from [19] correspond to problems with time-dependent
shear stresses on the boundary.

The main purpose of our paper is to determine the velocity field and the
shear stress corresponding to the unsteady motion of an Olroyd-B fluid pro-
duced by an infinite circular cylinder subject to a longitudinal time-dependent
shear stress. The general solutions, obtained by means of Hankel transforms
and presented in series form in terms of Bessel functions J0(·), J1(·) and J2(·),
satisfy both the governing equations and all imposed initial and boundary con-
ditions. Moreover, they can be easily specialized to give the similar solutions
for Maxwell, second grade and Newtonian fluids performing the same motion.

2. GOVERNING EQUATIONS

The Cauchy stress T in an incompressible Oldroyd-B fluid is given [2,
5–13, 15, 17, 20] by

(2.1) T = −pI + S, S + λ(Ṡ − LS− SL
T) = µ[A + λr(Ȧ− LA− AL

T)],

where −pI denotes the indeterminate spherical stress due to the constraint
of incompressibility, S is the extra-stress tensor, L the velocity gradient,
A = L + L

T the first Rivlin Ericksen tensor, µ the dynamic viscosity of the
fluid, λ and λr are relaxation and retardation times, the superscript T indi-
cates the transpose operation and the superposed dot indicates the material
time derivative. The model characterized by the constitutive equations (2.1)
contains as special cases the upper-convected Maxwell model for λr = 0 and
the Newtonian fluid model for λr = λ = 0. In some special flows, as those to
be considered here, the governing equations for an Oldroyd-B fluid resemble
those for a second grade fluid. For the problem under consideration we shall
assume a velocity field and an extra-stress of the form

(2.2) V = V(r, t) = v(r, t)ez, S = S(r, t),

where ez is the unit vector in the z-direction of the system of cylindrical
coordinates r, θ and z. For such flows the constraint of incompressibility is
automatically satisfied. If the fluid is at rest up to time t = 0, then

(2.3) V(r, 0) = 0, S(r, 0) = 0

and Eqs. (2.1)2 and (2.2) imply Srr = Srθ = Sθz = Sθθ = 0.
In the absence of body forces and a pressure gradient in the axial di-

rection, the balance of linear momentum and the constitutive equation (2.1)2
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lead to the relevant equations

(2.4) (1 + λ∂t)τ(r, t) = µ(1 + λr∂t)∂rv(r, t), ρ∂tv(r, t) =

(

∂r +
1

r

)

τ(r, t),

where ρ is the constant density of the fluid and τ = Srz is the shear stress
that is different of zero.

Eliminating τ between Eqs. (2.4) we obtain the governing equation

(2.5) λ∂2
t v(r, t) + ∂tv(r, t) = (ν + α∂t)

(

∂2
r +

1

r
∂r

)

v(r, t),

where α = νλr and ν = µ/ρ is the kinematic viscosity of the fluid. The partial
differential equation (2.5), with adequate initial and boundary conditions, can
be solved in principle by several methods, their effectiveness strictly depending
on the domain of definition. In our case the integral transforms technique
appears to be a systematic, efficient and powerful tool. The Hankel transform
can be used to eliminate the spatial variable Eq. (2.5).

However, the partial differential equation (2.5) is one order higher in t
than the similar equation for Newtonian and second grade fluids. Thus, in
order to solve a well-posed problem for Oldroyd-B or Maxwell fluids one has
to require an additional initial condition, apart from the requirement that
the fluid is initially at rest. As early as 1966, Srivastava [16] solved a similar
problem for fluids of Maxwell type and assumed that the time derivative of
velocity is zero at time t = 0. Recently, Hayat et al [11], Tan and Masuoka [17]
and Aksel et al. [2] have solved unsteady problems for Oldroyd-B fluids using
the initial conditions v = ∂tv = 0 at t = 0, although the second condition
seems to have no physical significance. It has been adopted for mathematical
convenience. For all that, for the comparison of the behaviour of some flows
for various fluid models the adoption of such a condition does not detract from
the overall conclusions regarding the behaviour differences.

3. AXIAL COUETTE FLOW THROUGH
AN INFINITE CIRCULAR CYLINDER

Let us consider an incompressible Oldroyd-B fluid at rest in an infinite
circular cylinder of radius R. After the initial moment the cylinder is pulled
by a time-dependent shear stress along its axis

(3.1) τ(R, t) = f [t − λ(1 − e−
t

λ )], t > 0,

where f is a constant. Due to the shear, the fluid is gradually displaced, its
velocity being of the form (2.2). The governing equation is Eq. (2.5) while
the appropriate initial and boundary conditions are

(3.2) v(r, 0) = ∂tv(r, 0) = 0 for r ∈ [0, R),
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respectively,

(3.3) (1 + λ∂t)τ(R, t) = µ(1 + λr∂t)∂rv(R, t) = ft, t ≥ 0.

In order to determine the velocity field, let us denote by

(3.4) vnH(t) =

∫ R

0
rv(r, t)J0(rrn)dr, n = 1, 2, 3, . . .

the finite Hankel transform of v(r, t), where rn are the positive roots of the
transcendental equation J1(Rr) = 0, and use the relation [4, Eq. (13.4.31)]

(3.5)

∫ R

0
r

(

∂2

∂r2
+

1

r

∂

∂r

)

v(r, t)J0(rrn)dr = RJ0(Rrn)
∂v(R, t)

∂r
− r2

nvnH(t).

Multiplying Eq. (2.5) by rJ0(rrn), integrating the result with respect to
r from 0 to R and using the boundary condition (3.3) and identity (3.5), we
find that

(3.6) λv̈nH(t) + (1 + αr2
n)v̇nH(t) + νr2

nvnH(t) =
f

ρ
tRJ0(Rrn), t > 0.

It also follows from (3.2) that

(3.7) vnH(0) = v̇nH(0) = 0.

The solution of the linear ordinary differential equation (3.6), with the initial
conditions (3.7), is given by
(3.8)

vnH(t) =
f

µ

RJ0(Rrn)

r2
n

[

t−
eq2nt − eq1nt

q2n − q1n

−
1 + αr2

n

νr2
n

(

1 −
q2neq1nt − q1neq2nt

q2n − q1n

) ]

,

where q1n, q2n =
−(1+αr2

n)±
√

(1+αr2
n)2−4νλr2

n

2λ
.

Finally, applying the inverse Hankel transform formula [4, Eq. (13.4.30)]
and using the identity

(3.9) r2 = 4

∞
∑

n=1

J0(rrn)

r2
nJ0(Rrn)

,

we find for the velocity field v(r, t) the simple expression

(3.10) v(r, t) =
fr2

2µR
(t − λr) −

2f

µνR

∞
∑

n=1

J0(rrn)

r4
nJ0(Rrn)

+
2f

µR

∞
∑

n=1

[

1 + αr2
n

νr2
n

q2neq1nt − q1neq2nt

q2n − q1n

−
eq2nt − eq1nt

q2n − q1n

]

J0(rrn)

r2
nJ0(Rrn)

,
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or equivalently

(3.11) v(r, t)=
fr2

2µR
(t−λr)−

2f

µνR

∞
∑

n=1

(

1 − λ
q2
1neq2nt − q2

2neq1nt

q2n − q1n

)

J0(rrn)

r2
nJ0(Rrn)

.

Solving Eq. (2.4)1 with respect to τ(y, t) and taking into account Eq. (2.3)2,
we find that

(3.12) τ(r, t) =
µ

λ
e−

t

λ

∫ t

0
e

τ

λ (1 + λr∂τ )∂rv(r, τ)dτ.

Substituting (3.10) into (3.12) and using the identities

q1nq2n =
νr2

n

λ
, q3nq4n =

ν(λ − λr)r
2
n

λ2 , q1nq3n = −νr2
n

1 + λrq1n

λ
,

q2nq4n = −νr2
n

1 + λrq2n

λ
, q1nq4n =

νr2
n + q1n

λ
, q2nq3n =

νr2
n + q2n

λ
,

where λq3n = 1 + λq1n and λq4n = 1 + λq2n, after lengthy but straightforward
computations, we obtain, for the shear stress the formula

τ(r, t) =
fr

R

[

t − λ
(

1 − e−
t

λ

)]

+
2f

νR

(

1 − e−
t

λ

)

∞
∑

n=1

J1(rrn)

r3
nJ0(Rrn)

(3.13)

−
2f

νR

1

λ−λr

∞
∑

n=1

[

eq2nt−eq1nt

q2n − q1n

− λr

q2neq1nt−q1neq2nt

q2n − q1n

+ λre
−

t

λ

]

(1+αr2
n)J1(rrn)

r3
nJ0(Rrn)

−
2f

νR

λ

λ − λr

∞
∑

n=1

[

q4neq1nt − q3neq2nt

q2n − q1n

− e−
t

λ

]

J1(rrn)

r3
nJ0(Rrn)

−
2f

νR

λr

λ − λr

∞
∑

n=1

[

q4neq1nt − q3neq2nt

q2n − q1n

− e−
t

λ

]

(1 + αr2
n)J1(rrn)

r3
nJ0(Rrn)

+
2f

νR

λr

λ − λr

∞
∑

n=1

[

q2neq2nt − q1neq1nt

q2n − q1n

+ νr2
n

eq2nt − eq1nt

q2n − q1n

− e−
t

λ

]

J1(rrn)

r3
nJ0(Rrn)

.

Of course, Eq. (3.13) can be further processed to give the simple form
(3.14)

τ(r, t)=
fr

R

[

t−λ
(

1−e−
t

λ

)]

+
2f

νR

∞
∑

n=1

[

1−
q2neq1nt−q1neq2nt

q2n − q1n

]

J1(rrn)

r3
nJ0(Rrn)

.
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4. LIMITING CASES

1. Letting λr → 0, in Eqs. (3.11) and (3.14) we get the solutions

(4.1) v(r, t) =
fr2

2µR
t −

2f

µνR

∞
∑

n=1

(

1 − λ
q2
5neq6nt − q2

6neq5nt

q6n − q5n

)

J0(rrn)

r2
nJ0(Rrn)

,

τ(r, t) =
fr

R

[

t − λ
(

1 − e−
t

λ

)]

(4.2)

+
2f

νR

∞
∑

n=1

[

1 −
q6neq5nt − q5neq6nt

q6n − q5n

]

J1(rrn)

r3
nJ0(Rrn)

,

corresponding to a Maxwell fluid performing the same motion. In the above
relations,

q5n, q6n =
− 1 ±

√

1 − 4νλr2
n

2λ
, q7n = 1 + λq5n and q8n = 1 + λq6n.

2. Letting λ → 0 in Eqs. (3.11) and (3.14), the similar solutions (cf. [14,
Eqs. (30) and (34)])

v(r, t) =
fr2

2µR
(t − λr)(4.3)

−
2f

µνR

∞
∑

n=1

[

1 − (1 + αr2
n) exp

(

−
νr2

nt

1 + αr2
n

)]

J0(rrn)

r4
nJ0(Rrn)

,

(4.4) τ(r, t) =
fr

R
t +

2f

νR

∞
∑

n=1

[

1 − exp

(

−
νr2

nt

1 + αr2
n

)]

J1(rrn)

r3
nJ0(Rrn)

,

corresponding to a second grade fluid are recovered.

3. Finally, letting λ → 0 in Eqs. (4.1) and (4.2) or λr → 0 in (4.3) and
(4.4), the solutions

(4.5) v(r, t) =
fr2

2µR
t −

2f

µνR

∞
∑

n=1

(

1 − e−νr2
nt

) J0(rrn)

r4
nJ0(Rrn)

,

(4.6) τ(r, t) =
fr

R
t +

2f

νR

∞
∑

n=1

(

1 − e−νr2
nt

) J1(rrn)

r3
nJ0(Rrn)

,

for a Newtonian fluid are recovered [1, 14]. Of course, for the last two cases
(Newtonian and second grade fluids), the boundary condition obtained from
(3.1) for λ → 0 is

(4.7) τ(R, t) = ft.
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5. NUMERICAL RESULTS AND CONCLUSIONS

The aim of this note is to provide exact solutions for the velocity field
v(r, t) and the shear stress τ(r, t) corresponding to the unsteady flow of an
Oldroyd-B fluid due to an infinite circular cylinder subject to a longitudinal
time-dependent shear stress. Direct computations show that these solutions,
obtained by means of Hankel transforms and presented in series form in terms
of Bessel functions J0(·), J1(·) and J2(·), satisfy both the governing equations
and all imposed initial and boundary conditions. Furthermore, the similar
solutions for Maxwell, second grade and Newtonian fluids performing the same
motion are obtained as limiting cases from the general solutions for λr → 0,
λ → 0, respectively, λr and λ → 0.

Finally, in order to reveal some relevant physical aspects of the solutions
obtained, diagrams of the velocity field v(r, t) given by Eq. (3.11) have been
drawn against r for different values of t and of the material constants. In
Figure 1 the velocity profiles corresponding to an Oldroyd-B fluid are drawn
for three different times. They give the behavior of the non-Newtonian fluid.

Fig. 1. Profiles of the velocity field v(r, t) given by Eq. (3.11) – curves v1(r), v2(r), v3(r),

for ν = 0.0357541, µ = 32, R = 1, f = 2, λ = 5, λr = 2 and different values of t.

The influence of the retardation time λr and the kinematic viscosity ν
on the motion of the fluid can be observed from Figures 2 and 3. The two
parameters, as it was to be expected, have similar effects on the motion. The
velocity of the fluid decreases if λr or ν increases. Figure 4 spotlights the fact
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that for λ and λr → 0 the velocity of the Oldroyd-B fluid tends to that of the
Newtonian fluid, their diagrams being almost identical.

Fig. 2. Profiles of the velocity field v(r, t) given by Eq. (3.11) – curves v1(r), v2(r), v3(r),

for ν = 0.0357541, µ = 32, R = 1, f = 2, λ = 7, t = 15 s and different values of λr.

Fig. 3. Profiles of the velocity field v(r, t) given by Eq. (3.11) – curves v1(r), v2(r), v3(r),

for R = 1, f = 2, λ = 8, λr = 7, t = 32 s and different values of ν.
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Fig. 4. Profiles of the velocity field v(r, t) given by Eq. (3.11) – curves v1(r), v2(r) and
Eq. (4.5) – curves vN1(r), vN2(r) for ν = 0.0357541, µ = 32, R = 1,

f = 2, λ = 0.01, λr = 0.01 and different values of t.
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