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The object of the present paper is to study ξ-concircularly flat and φ-concircularly
flat N(k)-contact metric manifolds. Beside these, we also study N(k)-contact
metric manifolds satisfying Z(ξ,X).S = 0. Finally, we construct an example to
verify some results.
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1. INTRODUCTION

A transformation of a (2n + 1)-dimensional Riemannian manifold M ,
which transforms every geodesic circle of M into a geodesic circle, is called a
concircular transformation [16, 21]. A concircular transformation is always a
conformal transformation [21]. Here, geodesic circle means a curve in M whose
first curvature is constant and whose second curvature is identically zero. Thus,
the geometry of concircular transformations, i.e., the concircular geometry, is
a generalization of inversive geometry in the sense that the change of metric is
more general than that induced by a circle preserving diffeomorphism (see also
[6]). An interesing invariant of a concircular transformation is the concircular
curvature tensor Z. It is defined by [16, 17]

Z(X,Y )W =R(X,Y )W− r

2n(2n+ 1)
[g(Y,W )X−g(X,W )Y ],(1.1)

where X,Y,W ∈ TM and r is the scalar curvature. Riemannian manifolds
with vanishing concircular curvature tensor are of constant curvature. Thus,
the concircular curvature tensor is a measure of the failure of a Riemannian
manifold to be of constant curvature.

Let M be an almost contact metric manifold equipped with an almost
contact metric structure (φ, ξ, η, g). At each point p ∈ M , decompose the
tangent space TpM into direct sum TpM = φ(TpM)⊕ {ξp}, where {ξp} is the
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1-dimensional linear subspace of TpM generated by {ξp}. Thus, the conformal
curvature tensor C is a map

C : TpM × TpM × TpM −→ φ(TpM)⊕ {ξp}, p ∈M.

It may be natural to consider the following particular cases:

(1) C : Tp(M) × Tp(M) × Tp(M) −→ {ξp}, i.e., the projection of the
image of C in φ(Tp(M)) is zero.

(2) C : Tp(M)×Tp(M)×Tp(M) −→ φ(Tp(M)), i.e., the projection of the
image of C in {ξp} is zero. This condition is equivalent to

(1.2) C(X,Y )ξ = 0.

(3) C : φ(Tp(M)) × φ(Tp(M)) × φ(Tp(M)) −→ {ξp}, i.e., when C is
restricted to φ(Tp(M))×φ(Tp(M))×φ(Tp(M)), the projection of the image of
C in φ(Tp(M)) is zero. This condition is equivalent to

(1.3) φ2C(φX, φY )φZ = 0.

An almost contact metric manifold satisfying (1.2) and (1.3) are called
ξ-conformally flat and φ-conformally flat, respectively. Almost contact metric
manifolds satisfying the cases (1), (2) and (3) are considered in [11], [12] and
[13], respectively .

In [12], it is proved that a K-contact manifold is ξ-conformally flat if
and only if it is an η-Einstein Sasakian manifold. In [20], the authors studied
ξ-conformally flat N(k)-contact metric manifold. A compact φ-conformally
flat K-contact manifold with regular contact vector field has been studied in
[13]. Moreover, in [15] the author studied φ-conformally flat (k, µ)-contact
metric manifolds. Motivated by the above studies, in this paper we study ξ-
concircularly flat and φ-concircularly flatN(k)-contact metric manifolds. Anal-
ogous to the considerations of conformal curvature tensor here we define the
following:

Definition 1.1. A (2n + 1)-dimensional N(k)-contact metric manifold is
said to be ξ-concircularly flat if

(1.4) Z(X,Y )ξ = 0, for X,Y ∈ TM.

Definition 1.2. A (2n + 1)-dimensional N(k)-contact metric manifold is
said to be φ-concircularly flat if

(1.5) g(Z(φX, φY )φW,φU) = 0 for X,Y,W,U ∈ TM.

In [7], D.E. Blair et al. started a study of concircular curvature tensor of
contact metric manifolds. A (2n + 1)-dimensional N(k)-contact metric man-
ifold satisfying Z(ξ,X).Z = 0, Z(ξ,X).R = 0 and R(ξ,X).Z = 0 have been
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considered in [7]. B.J. Papantoniou [1] and D. Perrone [9] included the stud-
ies of contact metric manifolds satisfying R(ξ,X).S = 0, where S is the Ricci
tensor. Motivated by these studies, we continue the study of the paper [7] and
classify N(k)-contact manifolds with concircular curvature tensor Z satisfying
Z(ξ,X).S = 0.

The present paper is organized as follows. After preliminaries in Section
3, we study ξ-concircularly flat N(k)-contact metric manifolds and prove that
a (2n + 1)-dimensional, n > 1, ξ-concircularly flatN(k)-contact metric man-
ifold is locally isometric to Example 2.1. Section 4 deals with the study of
φ-concircularly flat N(k)-contact metric manifolds. In this section, we prove
that a φ-concircularly flat (2n + 1)-dimensional, n ≥ 1, N(k)-contact metric
manifold is a Sasakian manifold. Section 5 is devoted to study a (2n + 1)-
dimensional, n ≥ 2, N(k)-contact metric manifold satisfying Z(ξ,X).S = 0
and prove that the manifold satisfies Z(ξ.X).S = 0 if and only if it is an
Einstein-Sasakian manifold. Finally, in Section 6, we construct an example of
a 3-dimensional N(k)-contact metric manifold which verifies some results of
Section 3.

2. PRELIMINARIES

A (2n + 1)-dimensional differentiable manifold M is said to admit an
almost contact structure if it admits a tensor field φ of type (1, 1), a vector
field ξ and a 1-form η satisfying [3, 4]

(2.1) φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0 and η ◦ φ = 0.

An almost contact metric structure is said to be normal if the induced
almost complex structure J on the product manifold M × R defined by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
)

is integrable, where X is tangent to M , t is the coordinate of R and f is a
smooth function on M × R. Let g be the compatible Riemannian metric with
almost contact structure (φ, ξ, η), i.e.,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ).

Then M becomes an almost contact metric manifold equipped with an
almost contact metric structure (φ, ξ, η, g). From (2.1) it can be easily seen
that

(2.3) g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X),

for any vector fields X,Y . An almost contact metric structure becomes a
contact metric structure if g(X,φY ) = dη(X,Y ), for all vector fields X,Y .
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A contact metric manifold is said to be Einstein if S(X,Y ) = λg(X,Y ),
where λ is a constant and η-Einstein if S(X,Y ) = αg(X,Y ) + βη(X)η(Y ),
where α and β are smooth functions.

A normal contact metric manifold is a Sasakian manifold. An almost
contact metric manifold is Sasakian if and only if

(2.4) (∇Xφ)Y = g(X,Y )ξ − η(Y )X,

X, Y ∈ TM , where ∇ is the Levi-Civita connection of the Riemannian metric
g. A contact metric manifold M2n+1(φ, ξ, η, g) for which ξ is a Killing vector
field is said to be a K-contact metric manifold. A Sasakian manifold is K-
contact but not conversely. However, a 3-dimensional K-contact manifold is
Sasakian [14].

It is well known that the tangent sphere bundle of a flat Riemannian
manifold admits a contact metric structure stisfying R(X,Y )ξ = 0 [5]. Again
on a Sasakian manifold [18] we have

R(X,Y )ξ = η(Y )X − η(X)Y.

As a generalization of both R(X,Y )ξ = 0 and the Sasakian case: D.E.
Blair, T. Koufogiorgos and B.J. Papantoniou [8] introduced the (k, µ)- nullity
distribution on a contact metric manifold and gave several reasons for studying
it. The (k, µ)-nullity distribution N(k, µ) [8] of a contact metric manifold M
is defined by

N(k, µ) : p −→ Np(k, µ) = {W ∈ TpM : R(X,Y )W

= (kI + µh)(g(Y,W )X − g(X,W )Y )},
for all X,Y ∈ TM, where (k, µ) ∈ R2. A contact metric manifold M with ξ ∈
N(k, µ) is called a (k, µ)-contact metric manifold. If µ = 0, the (k, µ)-nullity
distribution reduces to k-nullity distribution [19]. The k-nullity distribution
N(k) of a Riemannian manifold is defined by [19]

N(k) : p −→ Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]},
k being a constant. If the characteristic vector field ξ ∈ N(k), then we call a
contact metric manifold as N(k)-contact metric manifold [7]. If k = 1, then
the manifold is Sasakian and if k = 0, then the manifold is locally isometric to
the product En+1(0)× Sn(4) for n > 1 and flat for n = 1 [5].

However, for a N(k)-contact metric manifold M of dimension (2n + 1),
we have [7]

(2.5) (∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),

where h = 1
2£ξφ.

(2.6) h2 = (k − 1)φ2.
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(2.7) R(X,Y )ξ = k[η(Y )X − η(X)Y ].

(2.8) R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X].

S(X,Y ) = 2(n− 1)g(X,Y ) + 2(n− 1)g(hX, Y )(2.9)

+[2nk − 2(n− 1)]η(X)η(Y ), n ≥ 1.

(2.10) S(Y, ξ) = 2nkη(X).

(2.11) r = 2n(2n− 2 + k).

Given a non-Sasakian (k, µ)-contact manifold M , E. Boeckx [10] intro-
duced an invariant

IM =
1− µ

2√
1− k

and showed that for two non-Sasakian (k, µ)-manifolds M1 and M2, we have
IM1 = IM2 if and only if up to a D-homothetic deformation, the two manifolds
are locally isometric as contact metric manifolds.

Thus, we see that from all non-Sasakian (k, µ)-manifolds of dimension
(2n + 1) and for every possible value of the invariant IM , one (k, µ)-manifold
M can be obtained. For IM > −1 such examples may be found from the
standard contact metric structure on the tangent sphere bundle of a manifold
of constant curvature c where we have IM = 1+c

|1−c| . Boeckx also gives a Lie
algebra construction for any odd dimension and value of IM < −1.

Example 2.1. Using this invariant, D.E. Blair, J-S. Kim and M.M. Tri-
pathi [7] constructed an example of a (2n + 1)-dimensional N(1 − 1

n)-contact
metric manifold, n > 1. The example is given in the following:

Since the Boeckx invariant for a (1− 1
n , 0)-manifold is

√
n > −1, we con-

sider the tangent sphere bundle of an (n+ 1)-dimensional manifold of constant
curvature c so chosen that the resulting D-homothetic deformation will be a
(1− 1

n , 0)-manifold. That is, for k = c(2− c) and µ = −2c we solve

1− 1

n
=
k + a2 − 1

a2
, 0 =

µ+ 2a− 2

a

for a and c. The result is

c =

√
n± 1

n− 1
, a = 1 + c

and taking c and a to be these values we obtain N(1 − 1
n)-contact metric

manifold.
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The above example will be used in Theorem 3.1.

Here, we state some Lemmas which will be neccessary to prove our main
results.

Lemma 2.1 ([5]). A contact metric manifold M2n+1 satisfying the condi-
tion R(X,Y )ξ = 0 for all X, Y is locally isometric to the Riemannian product
of a flat (n+ 1)-dimensional manifold and an n-dimensional manifold of posi-
tive curvature 4, i.e., En+1(0)× Sn(4) for n > 1 and flat for n = 1.

Lemma 2.2 ([2]). Let M be an η-Einstein manifold of dimension (2n+1)
(n ≥ 1). If ξ belongs to the k-nullity distribution, then k = 1 and the structure
is Sasakian.

Lemma 2.3 ([19]). Let M be an Einstein manifold of dimension (2n+ 1)
(n ≥ 2). If ξ belongs to the k-nullity distribution, then k = 1 and the structure
is Sasakian.

3. ξ-CONCIRCULARLY FLAT N(k)-CONTACT METRIC MANIFOLDS

In this section, we study ξ-concirculrly flat N(k)-contact metric man-
ifolds. Let M be a (2n + 1)-dimensional, n ≥ 1, ξ-concirculrly flat N(k)-
contact metric manifold. Putting W = ξ in (1.1) and applying (1.4) and
g(X, ξ) = η(X), we have

(3.1) R(X,Y )ξ =
r

2n(2n+ 1)
[η(Y )X − η(X)Y ].

Using (2.7) in (3.1), we obtain

(3.2) (k − r

2n(2n+ 1)
)[η(Y )X − η(X)Y ] = 0.

Now [η(Y )X − η(X)Y ] 6= 0 in a contact metric manifold, in general.
Therefore, (3.2) gives

(3.3) k =
r

2n(2n+ 1)
.

Using (2.11) in (3.3) yields

(3.4) k = 1− 1

n
.

Hence, we can state the following:

Theorem 3.1. If a (2n + 1)-dimensional (n > 1) N(k)-contact metric
manifold is ξ-concircularly flat, then it is locally isometric to Example 2.1.
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Let us consider a 3-dimensional ξ-concircularly flat N(k)-contact metric
manifold. Then n = 1 and in that case we have k = 0. Hence, in view of
Lemma 2.1, we can state the following:

Corollary 3.1. A 3-dimensional N(k)-contact metric manifold is ξ-
concircularly flat if and only if the manifold is flat.

4. φ-CONCIRCULARLY FLAT N(k)-CONTACT METRIC MANIFOLDS

This section is devoted to study φ-concircularly flat N(k)-contact metric
manifolds. Let M be a (2n+ 1)-dimensional φ-concircularly flat N(k)-contact
metric manifold.

Using (1.5) in (1.1) we obtain

g(R(φX, φY )φW,φV ) =
r

2n(2n+ 1)
[g(φY, φW )g(φX, φV )(4.1)

−g(φX, φW )g(φY, φV )].

Let {e1, e2, ..., en, φe1, φe2, ..., φen, ξ} be an orthonormal φ-basis of the
tangent space. Putting X = V = ei in (4.1) and taking summation over i = 1
to 2n and using (2.7), we obtain

(4.2) S(φY, φW ) = [
r(2n− 1)

2n(2n+ 1)
+ k]g(φY, φW ).

Replacing Y and W by φY and φW in (4.2) and using (2.1), (2.2), (2.10)
and (2.11) yields

(4.3) S(Y,W ) = Ag(Y,W ) +Bη(Y )η(W ),

where A and B are given by the following relations:

A =
(2n− 1)(2n− 2) + 4nk

2n+ 1
and B =

2(2n− 1){n(k − 1)− 1}
2n+ 1

.

In view of the equation (4.3) we state the following:

Proposition 4.1. A (2n+1)-dimensional φ-concircularly flat N(k)-contact
metric manifold is an η-Einstein manifold.

Using the Lemma 2.2 we have the following:

Theorem 4.1. A (2n+ 1)-dimensional φ-concircularly flat N(k)-contact
metric manifold is a Sasakian manifold.
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5. N(k)-CONTACT METRIC MANIFOLD SATISFYING Z(ξ,X).S = 0

This section deals with a (2n+1)-dimensional, n ≥ 2, N(k)-contact metric
manifold satisfying Z(ξ,X).S = 0. Now, the relation Z(ξ,X).S = 0 implies

(5.1) S(Z(ξ,X)Y,W ) + S(Y,Z(ξ,X)W ) = 0.

Using (1.1) in (5.1), we have

S(R(ξ,X)Y,W ) + S(Y,R(ξ,X)W )(5.2)

− r

2n(2n+ 1)
[g(X,Y )S(ξ,W )

−η(Y )S(X,W ) + g(X,W )S(Y, ξ)− η(W )S(X,Y )] = 0.

Using (2.8) and (2.10) in (5.2) yields

2nk[g(X,Y )η(W ) + g(X,W )η(Y )]− [S(X,W )η(Y )(5.3)

+S(X,Y )η(W )]− r

2n(2n+ 1)
[2nk{g(X,Y )η(W )

+g(X,W )η(Y )} − {S(X,W )η(Y ) + S(X,Y )η(W )}] = 0.

Putting W = ξ in (5.3) and using g(X, ξ) = η(X) and (2.10), we obtain

(5.4) { r

2n(2n+ 1)
− 1}[S(X,Y )− 2nkg(X,Y )] = 0.

Putting the value of r from (2.11) in r = 2n(2n + 1), we get k = 3. We
know that k ≤ 1 in a N(k)-contact metric manifold. Therefore r 6= 2n(2n+ 1)
and hence, from (5.4) we have

(5.5) S(X,Y ) = 2nkg(X,Y ).

Therefore, a N(k)-contact metric manifold satisfying Z(ξ,X).S = 0 is an
Einstein manifold. Therefore, in view of Lemma 2.3, we have the manifold is
a Sasakian manifold.

Conversely, let the manifold be an Einstein-Sasakian manifold. Then we
have k = 1 and S(X,Y ) = 2ng(X,Y ). Therefore, we have

(Z(ξ,X).S)(Y,W ) = S(Z(ξ,X)Y,W ) + S(Y,Z(ξ,X)W )(5.6)

= 2n[g((Z(ξ,X)Y,W ) + g(Y, Z(ξ,X)W )].

Using (1.1), (2.8) and (2.11) in (5.6) we easily obtain

(5.7) (Z(ξ,X).S)(Y,W ) = 0.

In view of the above discussions, we state the following:

Theorem 5.1. A (2n+1)-dimensional, n ≥ 2, N(k)-contact metric man-
ifold satisfies Z(ξ,X).S = 0 if and only if the manifold is an Einstein-Sasakian
manifold.
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6. EXAMPLE

In this section, we construct an example of a N(k)-contact metric man-
ifold which is ξ-concircularly flat. We consider 3-dimensional manifold M =
{(x, y, z) ∈ R3}, where (x, y, z) are the standard coordinate in R3. Let e1, e2,
e3 are three vector fields in R3 which satisfies

[e1, e2] = (1 + λ)e3, [e2, e3] = 2e1 and [e3, e1] = (1− λ)e2,

where λ is a real number.

Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by

η(U) = g(U, e1)

for any U ∈ χ(M). Let φ be the (1, 1)-tensor field defined by

φe1 = 0, φe2 = e3, φe3 = −e2.

Using the linearity of φ and g we have

η(e1) = 1,

φ2(U) = −U + η(U)e1
and

g(φU, φW ) = g(U,W )− η(U)η(W )

for any U,W ∈ χ(M). Moreover,

he1 = 0, he2 = λe2 and he3 = −λe3.

The Riemannian connection ∇ of the metric tensor g is given by Koszul’s
formula which is given by,

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Using Koszul’s formula we get the following:

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = −(1 + λ)e3, ∇e2e2 = 0, ∇e2e3 = (1 + λ)e1,

∇e3e1 = (1− λ)e2, ∇e3e2 = −(1− λ)e1, ∇e3e3 = 0.

In view of the above relations we have

∇Xξ = −φX − φhX, for e1 = ξ
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Therefore, the manifold is a contact metric manifold with the contact
structure (φ, ξ, η, g).

Now, we find the curvature tensors as follows:

R(e1, e2)e2 = (1− λ2)e1, R(e3, e2)e2 = −(1− λ2)e3,
R(e1, e3)e3 = (1− λ2)e1, R(e2, e3)e3 = −(1− λ2)e2,

R(e2, e3)e1 = 0, R(e1, e2)e1 = −(1− λ2)e2, R(e3, e1)e1 = (1− λ2)e3.

In view of the expressions of the curvature tensors we conclude that the
manifold is a N(1− λ2)-contact metric manifold.

Using the expressions of the curvature tensor we find the values of the
Ricci tensors as follows:

S(e1, e1) = 2(1− λ2), S(e2, e2) = 0, S(e3, e3) = 0.

Hence, r = S(e1, e1) + S(e2, e2) + S(e3, e3) = 2(1− λ2).
Let X and Y are any two vector fields given by

X = a1e1 + a2e2 + a3e3 and Y = b1e1 + b2e2 + b3e3.

Using (1.1) we get

Z(X,Y )e1 =
2(1− λ2)

3
[(a2b1 − a1b2)e2 + (a3b1 − a1b3)e3].

Therefore, the manifold will be ξ-concircularly flat if λ = 1 and in that
case the manifold will be a N(0)-contact metric manifold with r = 0 which
verifies the result of Section 3.
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