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We describe heat diffusion in a two-component composite conductor with an ε-

periodic interface. Due to an imperfect contact on the interface, the heat flow

through the interface is proportional to the jump of the temperature field by a

factor of order ε
γ . We study the limit behaviour of this parabolic problem when

the parameter ε tends to zero. We describe the different homogenized (limit)

problems, according to the value of γ. When γ = 1, a memory effect appears on

the limit problem.
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1. INTRODUCTION

The aim of this paper is to study the homogenization of a parabolic prob-

lem whose setting is a two-component composite conductor with an ε-periodic

interface. In particular, the physical problem involves heat transfer. Due to

an imperfect contact on the interface, the heat flow through the interface is

proportional to the jump of the temperature field by a factor of order εγ (see

[6] for the physical model).

We look closely to the domain in Rn which is Ω = Ω1ε ∪ Ω2ε with Ω1ε

connected and Ω2ε a disconnected union of εY -periodic sets of size εY2. We

consider Y = Y1∪Y2 to be the reference cell. The same domain were considered

by Monsurrò [24] and Donato and Monsurrò [15] for the elliptic case and by

Donato, Faella and Monsurrò [14] for the hyperbolic case. This work which is

devoted to the parabolic case completes the investigation.
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Mathematically speaking, we can model this physical problem as

(1.1)





u′
1ε − div(Aε∇u1ε) = f1ε + P ε

1
∗(g) in Ω1ε×]0, T [,

u′
2ε − div(Aε∇u2ε) = f2ε in Ω2ε×]0, T [,

Aε∇u1ε · n1ε = −Aε∇u2ε · n2ε on Γε×]0, T [,

Aε∇u1ε · n1ε = −εγhε(u1ε − u2ε) on Γε×]0, T [,

u1ε = 0 on ∂Ω×]0, T [,

u1ε(x, 0) = U0
1ε in Ω1ε,

u2ε(x, 0) = U0
2ε in Ω2ε,

where T > 0 and γ ≤ 1, niε is the unitary outward normal to Ωiε, i = 1, 2, P ε
1

is a suitable extension operator and P ε
1
∗ its adjoint. Here, Aε(x) := A(x/ε),

with A a periodic, bounded and positive definite matrix field while hε(x) :=
h(x/ε), with a positive, bounded and periodic function h. The data U0

iε and
fiε, i = 1, 2, are given in L2(Ωiε) and L2(0, T ; L2(Ωiε)), respectively, while
g ∈ L2(0, T ; H−1(Ω)).

We study the limit behaviour of this problem when the parameter ε tends
to zero. We describe the different homogenized (limit) problems, according to
the value of γ. We restrict our study to the case γ ≤ 1 because, otherwise, as
shown by Hummel [20], one cannot have boundedness in the solution.

It is but natural to impose some convergence on the data in order to get
homogenization results. We work under the assumptions





Ũ0
ε := (Ũ0

1ε, Ũ
0
2ε) ⇀ U0 := (θ1U

0
1 , θ2U

0
2 ) weakly in L2(Ω) × L2(Ω),

f̃ε := (f̃1ε, f̃2ε) ⇀ (θ1f1, θ2f2) weakly in [L2(0, T ; L2(Ω))]2,

where θi, i = 1, 2, is the proportion of material occupying Ωiε and ˜ denotes
the zero extension to the whole of Ω.

In Section 4, we prove step by step (see Theorem 4.1) the homogenization
results

(1.2)

{
P ε

1 u1ε ⇀ u1 weakly in L2(0, T ; H1
0 (Ω)),

ũ2ε ⇀ u2 weakly∗ in L∞(0, T ; L2(Ω)),

for γ ≤ 1, where P ε
1 is a suitable extension operator and u1 is the solution of

a homogenized problem which changes according to the value of γ.
In particular, we show for the case γ < 1 that u1 is the unique solution

of the problem




u′
1 − div(A0

γ∇u1) = θ1f1 + θ2f2 + g in Ω×]0, T [,

u1 = 0 on ∂Ω×]0, T [,

u1(0) = θ1U
0
1 + θ2U

0
2 in Ω.
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In addition, we prove in this case that u2 = θ2u1. This only means that
the second component converges to the same limit as the first component, up
to the proportionality constant occupied by the material.

For the case γ = 1, we prove that the couple (u1, u2) is the unique
solution of the problem (a PDE coupled with an ODE)





θ1u
′
1 − div(A0

γ∇u1) + ch(θ2u1 − u2) = θ1f1 + g in Ω×]0, T [,

u′
2 − ch(θ2u1 − u2) = θ2f2 in Ω×]0, T [,

u1 = 0 on ∂Ω×]0, T [,

u1(0) = U0
1 , u2(0) = θ2U

0
2 in Ω,

where ch = 1
Y2

∫
γ h(y) dσy. Moreover, solving the ODE and replacing in the

PDE yields

θ1u
′
1 − div(A0

γ∇u1) + chθ2u1 − c2
hθ2

∫ t

0
K(t, s)u1(s) ds = F (x, t),

where K is an exponential kernel which is explicitly computed, together with F .
This means that a memory effect appears in the limit for the case γ = 1, which
is an interesting one. A similar phenomenon was observed in the hyperbolic
case but, in that case, the kernel is periodic.

Here, A0
γ is a constant positive definite matrix, called the homogenized

or effective matrix. In our case, it varies according to whether γ < −1, γ =
−1 and −1 < γ ≤ 1. The same findings as in [15] and [24] regarding the
homogenized matrices have been found, as follows.

When γ < −1, the matrix A0
γ is described in terms of the classical

periodic solution of a problem for a composite occupying the whole Ω without
jump on the interface (see for instance [2]).

For the case γ = −1, the homogenized matrix A0
γ is described in terms

of the periodic solution of a problem posed in two sub-domains of the refe-
rence cell separated by an interface. At the interface, a conormal derivative
proportional to the jump of the solution is prescribed.

Last, when −1 < γ ≤ 1, the matrix A0
γ is the same as that obtained for

the homogenization of an elliptic problem in the perforated domain Ω1ε with
a Neumann condition on the boundary (see [8]).

Aside from (1.2), we also prove the convergence

Aε∇̃u1ε + Aε∇̃u2ε ⇀ A0
γ∇u1 weakly in L2(0, T ; [L2(Ω)]n).

This result describes the contribution of both components in the limit.
More precisely, when −1 < γ ≤ 1,

{
Aε∇̃u1ε ⇀ A0

γ∇u1 weakly in L2(0, T ; [L2(Ω)]n),

Aε∇̃u2ε ⇀ 0 weakly in L2(0, T ; [L2(Ω)]n).
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Hence, for this case, the contributions given by the component Ω1ε and the
component Ω2ε can be identified separately.

One of the main difficulties in the parabolic case is that we only have
convergences (1.2) and no compactness of P ε

1 u1ε in L2(0, T ; L2(Ω)), which
makes it different from the hyperbolic case. This observation had been seen in
the case of perforated domains in [16]. To overcome this difficulty, we adapt
some lemmas already used in [16]. Also, one need to check that the initial
conditions u1(0) and u2(0) make sense. Finally, a specific difficulty in the case
γ = 1 is that one has no longer u2 = θ2u1. The identification of u2 and its
initial conditions requires technical arguments, too.

In Section 2, we set up notation and terminologies. We state the varia-
tional formulation of problem (1.1) in a suitable Sobolev space Hε

γ for which
we also give some characterizations. Moreover, we recall some technical results
needed in proving the main result.

Section 3 provides a detailed exposition of existence and uniqueness of the
solution to (1.1) using a result from an abstract Galerkin’s method. After that,
we compute the a priori estimates which are needed to establish the necessary
convergences. We also recall the classes of suitable test functions (see [15])
that will be used to identify the limit problem via Tartar’s oscillating test
functions method (see [28]). These test functions were used for the boundary
terms to cancel.

Some results of this paper were announced without proofs in [19]. Useful
results in the homogenization of heat equations in perforated domains can be
attributed to Donato and Nabil [16, 17]. Other works in parabolic problems
include those of Spagnolo [26] and Brahim-Otsman, Francfort and Murat [4].

The classical work on the elliptic problem corresponding to (1.1) has
been done by Lipton [21] for γ = 0. For the different values of γ we refer to
Monsurrò [24] and Donato and Monsurrò [15]. For the same elliptic problem
in other geometries, see Auriault and Ene [1], Pernin [25], Canon and Pernin
[5], Ene and Polisevski [18], Hummel [20] and, for optimal bounds, Lipton and
Vernescu [22].

For the treatment of the wave equation, we refer to [14], [2] and [11]. See
also [9] for the classical case in a fixed domain with oscillating coefficients and
[8] for the case of perforated domain with Neumann conditions.

For the pioneer works on linear memory effects in the homogenization of
parabolic problems, we refer to Mascarenhas [23] and Tartar [28].

2. STATEMENT OF THE PROBLEM

Let Ω denote an open and bounded set in Rn and {ε} be a sequence
of positive real numbers that converges to zero. Suppose Y1 and Y2 are two
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nonempty open sets such that Y1 is connected and Y2 has a Lipschitz contin-
uous boundary Γ. We let

Y = ]0, ℓ1[ × · · · × ]0, ℓn[ be the representative cell with Y = Y1 ∪ Y2.

For any k ∈ Zn, let

Y k
i := kl + Yi, Γk := kl + Γ where kl = (k1l1, . . . , knln) and i = 1, 2.

For any given ε, let Kε be the set of n-tuples such that εY k
i is included in Ω,

that is,
Kε := {k ∈ Zn | εY k

i ∩ Ω 6= φ, i = 1, 2}.

Also, we define the two components of Ω and the interface, as

Ωiε := Ω ∩

{ ⋃

k∈Kε

εY k
i

}
, i = 1, 2 and Γε = ∂Ω2ε,

respectively. Here we assume that

(2.1) ∂Ω ∩

( ⋃

k∈Zn

(εΓk)

)
= φ.

Therefore, Ω1ε is connected and Ω2ε is a union of ε−n disjoint translated sets
of εY2. Obviously, ∂Ω ∩ Γε = φ. Figure 1 shows the domain.

Fig. 1. The domain.

From now on, we follow the usual notation:




χω, the characteristic function of any open set ω ⊂ Rn,

mω(v) = 1
|ω|

∫
ω v dx, the mean value of v over a measurable set ω,

ṽ, the zero extension to Rn of any function v defined on Ωiε or Yi for i = 1, 2.

It is a fact that (for instance see [9])

(2.2) χ
Ωiε

⇀ θi :=
|Yi|

|Y |
, i = 1, 2, weakly in L2(Ω).



194 Editha C. Jose 6

We will consider the two spaces V ε and Hε
γ defined by

V ε := {v1 ∈ H1(Ω1ε) | v1 = 0 on ∂Ω}

with the corresponding norm

(2.3) ‖v1‖V ε := ‖∇v1‖L2(Ω1ε)

and

(2.4) Hε
γ := {v = (v1, v2) | v1 ∈ V ε and v2 ∈ H1(Ω2ε)}

for all γ ∈ R, with the corresponding norm

(2.5) ‖v‖2
Hε

γ
:= ‖∇v1‖

2
L2(Ω1ε) + ‖∇v2‖

2
L2(Ω2ε) + εγ‖v1 − v2‖

2
L2(Γε).

Note that if γ1 ≤ γ2 then ‖v‖2
Hε

γ2

≤ ‖v‖2
Hε

γ1

. Hence, in particular, for all

γ ≤ 1 we have

(2.6) ‖v‖Hε
1
≤ ‖v‖Hε

γ
.

Now, we have the functional setting to introduce our parabolic problem.
For the coefficient matrix, let A be an n×n Y -periodic matrix-valued function
in L∞(Y ) such that ∀λ ∈ Rn and, a.e. in Y ,

(2.7)

{
(A(x)λ, λ) ≥ α|λ|2,

|A(x)λ| ≤ βλ,

where α, β ∈ R with 0 < α < β. Now, for any ε > 0 set

(2.8) Aε(x) := A
(x

ε

)
.

Furthermore, consider a Y -periodic function h such that

(2.9) h ∈ L∞(Γ), ∃h0 ∈ R such that 0 < h0 < h(y), y a.e. in Γ,

and assume

(2.10) hε(x) := h
(x

ε

)
.

We suppose that

(2.11)





g ∈ L2(0, T ; H−1(Ω)),

U0
ε := (U0

1ε, U
0
2ε) ∈ L2(Ω1ε) × L2(Ω2ε),

fε := (f1ε, f2ε) ∈ L2(0, T ; L2(Ω1ε)) × L2(0, T ; L2(Ω2ε)).
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For T > 0 and γ ≤ 1 consider the problem

(2.12)





u′
1ε − div(Aε∇u1ε) = f1ε + P ε

1
∗(g) in Ω1ε×]0, T [,

u′
2ε − div(Aε∇u2ε) = f2ε in Ω2ε×]0, T [,

Aε∇u1ε · n1ε = −Aε∇u2ε · n2ε on Γε×]0, T [,

Aε∇u1ε · n1ε = −εγhε(u1ε − u2ε) on Γε×]0, T [,

u1ε = 0 on ∂Ω×]0, T [,

u1ε(x, 0) = U0
1ε in Ω1ε,

u2ε(x, 0) = U0
2ε in Ω2ε,

where niε is the unitary outward normal to Ωiε, i = 1, 2, P ε
1 is a suitable

extension operator given in Lemma 2.7 and P ε
1
∗ its adjoint.

By definition, P ε
1
∗ ∈ L(L2(0, T ; H−1(Ω));L2(0, T ; (V ε)′)) and for g ∈

L2(0, T ; H−1(Ω)), P ε
1
∗g is given by

(2.13) P ε
1
∗g : v ∈ L2(0, T ; V ε) 7→

∫ T

0
〈g, P ε

1 v〉H−1(Ω),H1
0 (Ω)ds.

Our goal is to describe the limit behaviour of the above problem when
the parameter ε tends to zero. We describe the different homogenized (limit)
problems, according to the value of γ. To do this, we consider its variational
formulation which is

(2.14)





Find uε = (u1ε, u2ε) in W ε such that

〈u′
1ε, v1〉(V ε)′,V ε + 〈u′

2ε, v2〉(H1(Ω2ε))′,H1(Ω2ε) +

∫

Ω1ε

Aε∇u1ε∇v1 dx

+

∫

Ω2ε

Aε∇u2ε∇v2 dx + εγ

∫

Γε

hε(u1ε − u2ε)(v1 − v2) dσx

=

∫

Ω1ε

f1εv1 dx + 〈g, P ε
1 v1〉H−1(Ω),H1

0 (Ω)+

∫

Ω2ε

f2εv2 dx in D′(0, T ),

for every (v1, v2) ∈ V ε × H1(Ω2ε),

u1ε(x, 0) = U0
1ε in Ω1ε and u2ε(x, 0) = U0

2ε in Ω2ε,

where

W ε := {v = (v1, v2) ∈ L2(0, T ; V ε) × L2(0, T ; H1(Ω2ε)) s.t.

v′ ∈ L2(0, T ; (V ε)′) × L2(0, T ; (H1(Ω2ε))
′)}

equipped with the norm

‖v‖W ε = ‖v1‖L2(0,T ; V ε) + ‖v2‖L2(0,T ;H1(Ω2ε))+

+‖v′1‖L2(0,T ; (V ε)′) + ‖v′2‖L2(0,T ; (H1(Ω2ε))′).
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Remark 2.1. The existence and uniqueness of the solution of our problem
are proved using a theorem based on an abstract Galerkin method while the
a priori estimates are obtained using Gronwall’s Lemma. These are discussed
in Section 3. The asymptotic behaviour is then established in Section 4.

We end this section with some technical lemmas that will be used in the
sequel. Let us recall some characterizations of the norm in the above spaces
introduced by Monsurrò.

Lemma 2.2 ([24]). For every fixed ε, the norms of Hε
γ and V ε×H1(Ω2ε)

are equivalent. Furthermore, there exist constants C1, C2 > 0 independent of
ε such that

(i) ‖v‖L2(Ω1ε)×L2(Ω2ε) ≤ C1‖v‖Hε
1
, ∀ v ∈ Hε

1 ;

(ii) ‖vi‖
2
L2(Γε) ≤ C2(ε

−1‖vi‖
2
L2(Ωiε) + ε‖∇vi‖

2
L2(Ωiε)), ∀ vi ∈ H1(Ωiε),

i = 1, 2.

The next result is an immediate consequence of Lemma 2.2.

Lemma 2.3. There exist two positive constants C1, C2 independent of ε
such that

C1‖v‖Hε
1
≤ ‖v‖V ε×H1(Ω2ε) ≤ C2‖v‖Hε

1
, ∀ v ∈ Hε

1 .

Lemma 2.4 ([12, 24]). There exists a positive constant C independent of
ε such that

‖v‖2
L2(Ω2ε) ≤ C(ε‖v‖2

L2(Γε) + ε2‖∇v‖2
L2(Ω2ε)), ∀ v ∈ L2(Ω2ε).

The following extension results due to D. Cioranescu and J. Saint Jean
Paulin will be useful.

Lemma 2.5 ([10]). (i) There exists a linear continuous operator

Q1 ∈ L(H1(Y1);H
1(Y )) ∩ L(L2(Y1);L

2(Y ))

such that

‖Q1v1‖L2(Y ) ≤ C‖v1‖L2(Y1) and ‖∇Q1v1‖L2(Y ) ≤ C‖∇v1‖L2(Y1)

for some positive constant C and for all v1 ∈ H1(Y1).
(ii) There exists a linear and continuous extension operator

Q2 ∈ L(H1(Y2);H
1
per

(Y ))

such that

‖Q2v2‖H1(Y ) ≤ C‖v2‖H1(Y2)

for some positive constant C and for every v2 ∈ H1(Y2).
(iii) There exists an extension operator

Qε
1 ∈ L(L2(Ω1ε);L

2(Ω)) ∩ L(V ε;H1
0 (Ω))
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such that

‖Qε
1v1‖L2(Ω) ≤ C‖v1‖L2(Ω1ε) and ‖∇Qε

1v1‖L2(Ω) ≤ C‖∇v1‖L2(Ω1ε)

for some positive constant C independent of ε.

Remark 2.6. Observe that Lemma 2.5 implies that there is a Poincaré
inequality in V ε, i.e., there exists a constant C > 0 such that

‖v‖L2(Ω1ε) ≤ C‖∇v‖L2(Ω1ε), ∀ v ∈ V ε.

On the other hand, D. Cioranescu and P. Donato proved

Lemma 2.7 ([8]). There exists a linear continuous extension operator
P ε

1 ∈ L(L2(0, T ;V ε);L2(0, T ;H1
0 (Ω))) ∩ L(L2(0, T ; L2(Ω1ε));L

2(0, T ; L2(Ω)))
such that for some positive constant C independent of ε and for any ϕ ∈
L2(0, T ;V ε) with ϕ′ ∈ L2(0, T ;L2(Ω1ε)) we have





P ε
1 ϕ = ϕ in Ω1ε×]0, T [,

P ε
1 ϕ′ = (P ε

1 ϕ)′ in Ω×]0, T [,

‖P ε
1 ϕ‖L2(0,T ;L2(Ω)) ≤ C‖ϕ‖L2(0,T ; L2(Ω1ε)),

‖P ε
1 ϕ′‖L2(0,T ; L2(Ω)) ≤ C‖ϕ′‖L2(0,T ;L2(Ω1ε)),

‖P ε
1 ϕ(t)‖H1

0 (Ω) ≤ C‖∇ϕ(t)‖L2(Ω1ε), ∀ t ∈ ]0, T [ ,

‖∇(P ε
1 ϕ)‖L2(0,T ; [L2(Ω)]n) ≤ C‖∇ϕ‖L2(0,T ; [L2(Ω1ε)]n).

We adapt Lemma 2.1 given in [3] to state

Corollary 2.8. If (vε) and (vε)
′ are bounded in L2(0, T ; H1

0 (Ω)) and
L2(0, T ; L2(Ω)), respectively, with vε → v strongly in L2(0, T ; L2(Ω)), then

P ε
1 (vε|Ω1ε

) ⇀ v weakly in L2(0, T ; L2(Ω)).

Proof. By Lemma 2.7 we have
{

P ε
1 (vε|Ω1ε

) bounded in L2(0, T ; H1
0 (Ω)),

(P ε
1 (vε|Ω1ε

))′ bounded in L2(0, T ; L2(Ω)).

So, by compactness, up to a subsequence, we get{
P ε

1 (vε|Ω1ε
) ⇀ v1 weakly in L2(0, T ; H1

0 (Ω)),

P ε
1 (vε|Ω1ε

) → v1 strongly in L2(0, T ; L2(Ω)).

On the other hand, P ε
1 (vε|Ω1ε

)χ
Ω1ε

= vεχΩ1ε
. As ε → 0, using (2.2), we have





P ε
1 (vε|Ω1ε

)χ
Ω1ε

⇀ v1θ1 weakly in L2(0, T ; L2(Ω)),

vεχΩ1ε
⇀ vθ1 weakly in L2(0, T ; L2(Ω)).

Hence v1 = v and the whole sequence P ε
1 (vε|Ω1ε

) converges. �
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The next result is a direct extension of Lemma 3.3 in [13] which is an
adaptation to the case of a disconnected set of Lemma 3.1 in [7].

Lemma 2.9 ([13, 7]). Suppose that Γ is of class C2. Let g be a function

in L∞(Γ) and set cg = 1
|Y2|

∫
Γ g(y) dσy. For every ε, let vε be a function in

L2(H1(Ω2ε)) such that for some positive constant C one has
{
‖vε‖L2(0,T ;H1(Ω2ε)) ≤ C,

ṽε ⇀ v weakly in L2(0, T ; L2(Ω)).

Then

lim
ε→0

ε

∫ T

0

∫

Γε

g(x/ε)vε dxdt = cg

∫ T

0

∫

Ω
v dxdt.

The last lemma of this section is very significant in this paper as it over-
comes the technical difficulty in passing to the limit with weak convergences
of products when one factor is independent of t. This result is due to Donato
and Nabil [16].

Lemma 2.10 ([16]). Let (hε) ⊂ Lp(0, T ;W 1,q
0 (Ω)) and (gε) ⊂ Lq′(Ω) with

p, q ≥ 1 and 1
q + 1

q′ = 1 be two sequences such that

{
hε ⇀ h weakly in Lp(0, T ;W 1,q

0 (Ω)),

gε ⇀ g weakly in Lq′(Ω).

Then hεgε ⇀ hg weakly in Lp(0, T ;L1(Ω)).

3. PRELIMINARY RESULTS

In this section, the existence and uniqueness of the solution of problem
(2.12) are ensured and a priori estimates are given. Moreover, the suitable
test functions necessary in describing the limit problems are presented.

3.1. Existence and uniqueness of solution

The result below is based on an abstract Galerkin method (see [29]).

Theorem 3.1 ([29]). Let (V,H, V ′) be an evolution triple, that is,
(i) V ⊆ H ⊆ V ′;
(ii) V is a real, separable and reflexive Banach space;
(iii) H is a real, separable Hilbert space, endowed with a scalar pro-

duct (· , ·)H ;
(iv) V is dense in H and the embedding V ⊆ H is continuous.



11 Homogenization of a parabolic problem with an imperfect interface 199

Let a : V ×V ×]0, T [→ R be a mapping on ]0, T [ for all u, v ∈ V such that
for every t ∈]0, T [, the map a(· , · , t) : V ×V → R is bilinear and ∀u, v ∈ V , the
function t 7→ a(u, v, t) is measurable on ]0, T [. Moreover, ∀u, v ∈ V , ∀ t ∈]0, T [,
suppose that

(v) ∃ a positive constant a1 such that |a(u, v, t)| ≤ a1‖u‖V ‖v‖V (boun-
dedness);

(vi) ∃ a2 > 0 and a3 ≥ 0 such that |a(u, u, t)| ≥ a2‖u‖
2
V − a3‖u‖

2
H

(Garding inequality).
Let U0 ∈ H and b ∈ L2(0, T ;V ′). Then there exists a unique solution to

the problem




Find u ∈ L2(0, T ;V ) such that u′ ∈ L2(0, T ;V ′) and
d

dt
(u(t), v)H + a(u(t), v)H = 〈b(t), v〉V ′,V , u(0) = U0 ∈ H,

for all v ∈ V and for almost all t ∈ ]0, T [.

The following classical result (see for instance [29]) gives meaning to the
initial condition u(0) in Theorem 3.1.

Proposition 3.2 ([29]). Let (V,H, V ′) be an evolution triple. If

W 1
2 (0, T ;V,H) = {u ∈ L2(0, T ;V ) | u′ ∈ L2(0, T ;V ′)}

is equipped with the norm

‖u‖W 1
2 (0,T ;V,H) = ‖u‖L2(0,T ;V ) + ‖u′‖L2(0,T ;V ′),

then one has the continuous embedding W 1
2 (0, T ;V,H) ⊂ C([0, T ],H).

We now derive the existence and uniqueness results of problem (2.14).

Theorem 3.3. Let T > 0, γ ≤ 1 and Hε
γ , Aε, hε be defined by (2.4), (2.8)

and (2.10), respectively. Then under assumption 2.11, problem (2.14) has a
unique solution.

Proof. We apply Theorem 3.1 with V = Hε
γ and H = L2(Ω1ε)×L2(Ω2ε)

which clearly satisfy (i)–(iii). Now, for γ ≤ 1,Hε
γ ⊆ L2(Ω1ε) × L2(Ω2ε) is a

continuous embedding since, ∀ v ∈ Hε
γ , from (2.6) and Lemma 2.2(i) we have

‖v‖L2(Ω1ε)×L2(Ω2ε) ≤ C‖v‖Hε
γ
.

Hence (V,H, V ′) is an evolution triple.
Consequently, it follows from Proposition 3.2 and (2.11) that

W ε ⊂ C([0, T ];L2(Ω1ε) × L2(Ω2ε)),

so that the initial conditions in (2.14) make sense for uε ∈ W ε.
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Second, suppose b = fε + 〈g, P ε
1 v1〉H−1(Ω),H1

0 (Ω), u0 = U0
ε and a(u, v, t) =

aε(u, v), where

aε(u, v) =

∫

Ω1ε

Aε∇u1∇v1 dx +

∫

Ω2ε

Aε∇u2∇v2 dx+

+ εγ

∫

Γε

hε(u1 − u2)(v1 − v2) dσx,

for every u = (u1, u2), v = (v1, v2) ∈ Hε
γ .

We verify (v). Observe that for every u, v ∈ Hε
γ we have

|a(u, v, t)| ≤

∣∣∣∣
∫

Ω1ε

Aε∇u1∇v1 dx

∣∣∣∣ +

∣∣∣∣
∫

Ω2ε

Aε∇u2∇v2 dx

∣∣∣∣+(3.1)

+

∣∣∣∣ε
γ

∫

Γε

hε(u1 − u2)(v1 − v2) dσx

∣∣∣∣ .

By (2.8) and Hölder inequality,
∣∣∣∣
∫

Ωiε

Aε∇ui∇vi dx

∣∣∣∣ ≤ β‖∇ui‖L2(Ωiε)‖∇vi‖L2(Ωiε), i = 1, 2.

On the other hand,
∣∣∣∣ε

γ

∫

Γε

hε(u1 − u2)(v1 − v2) dσx

∣∣∣∣ ≤ εγhε‖u1 − u2‖L2(Γε)‖v1 − v2‖L2(Γε).

Let

C =
(
β

1
2‖∇u1‖L2(Ω1ε), β

1
2 ‖∇u2‖L2(Ω2ε), ε

γ
2 h

ε
2 ‖u1 − u2‖L2(Γε)

)

and

D =
(
β

1
2‖∇v1‖L2(Ω1ε), β

1
2 ‖∇v2‖L2(Ω2ε), ε

γ
2 h

ε
2 ‖v1 − v2‖L2(Γε)

)
.

With the Euclidean norm in R3, we have C · D ≤ ‖C‖ ‖D‖, so that

β‖∇u1‖L2(Ω1ε)‖∇v1‖L2(Ω1ε) + β‖∇u2‖L2(Ω2ε)‖∇v2‖L2(Ω2ε)+(3.2)

+ εγhε‖u1 − u2‖L2(Γε)‖v1 − v2‖L2(Γε) ≤

≤
(
β‖∇u1‖

2
L2(Ω1ε) + β‖∇u2‖

2
L2(Ω2ε) + εγhε‖u1 − u2‖

2
L2(Γε)

) 1
2
×

×
(
β‖∇v1‖

2
L2(Ω1ε) + β‖∇v2‖

2
L2(Ω2ε) + εγhε‖v1 − v2‖

2
L2(Γε)

) 1

2
.

So, choosing a1 = max {β, hε}, it follows from (3.1) and (3.2) that

|a| ≤ a1‖u‖V ‖v‖V , ∀u, v ∈ Hε
γ , ∀ t ∈]0, T [.
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We now verify (vi). By definition,

|a(u, u, t)| =

∣∣∣∣
∫

Ω1ε

Aε∇u1∇u1 dx +

∫

Ω2ε

Aε∇u2∇u2 dx+

+ εγ

∫

Γε

hε(u1 − u2)
2 dσx

∣∣∣∣.

By (2.8) we have




∫

Ωiε

Aε∇ui∇ui dx ≥ α‖∇ui‖
2
L2(Ωiε), i = 1, 2,

εγ

∫

Γε

hε(u1 − u2)
2 dσx ≥ εγh0‖u1 − u2‖

2
L2(Γε).

So, choosing a2 = min {α, h0} and a3 = 0 we have (vi). �

Remark 3.4. Under the same assumptions as in Theorem 3.3, it can be
concluded further that there is a continuous dependence on the data (see [29]).
We need to check the uniformity in ε of these estimates which will be shown
in the next subsection.

3.2. A priori estimates

In order to get uniform estimates and homogenization results, it is nece-
ssary to make convergence assumptions on U0

ε and fε, that is,

(3.3)

{
Ũ0

ε ⇀ U0 := (θ1U
0
1 , θ2U

0
2 ) weakly in L2(Ω) × L2(Ω),

f̃ε ⇀ (θ1f1, θ2f2) weakly in L2(0, T ; L2(Ω)) × L2(0, T ; L2(Ω)),

where θi, i = 1, 2 are given by (2.2).

Proposition 3.5. Let Aε and hε be defined as in Theorem 3.3 and sup-
pose (2.11), (2.13) and (3.3) hold. Let uε be the solution of problem (2.14) with
γ ≤ 1. Then ‖uε‖Hε

γ
is bounded, that is, there exists a constant c independent

of ε such that
(i) ‖u1ε‖L2(0,T ;V ε) + ‖u1ε‖L∞(0,T ; L2(Ω1ε)) < c,
(ii) ‖u2ε‖L2(0,T ;H1(Ω2ε)) + ‖u2ε‖L∞(0,T ; L2(Ω2ε)) < c,

(iii) ‖u1ε − u2ε‖L2(0,T ; L2(Γε)) < cε−
γ
2 .

Proof. In the variational formulation (2.14), choose v = (u1ε, u2ε) as test
function. Integrating by parts and using the Hölder inequality we have

1

2
‖u1ε(t)‖

2
L2(Ω1ε) +

1

2
‖u2ε(t)‖

2
L2(Ω2ε) +

∫ t

0

∫

Ω1ε

Aε∇u1ε∇u1ε dxds +
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+

∫ t

0

∫

Ω2ε

Aε∇u2ε∇u2ε dxds + εγ

∫ t

0

∫

Γε

hε|u1ε − u2ε|
2 dσx ds =

=
1

2
‖U0

1ε‖
2
L2(Ω1ε) +

1

2
‖U0

2ε‖
2
L2(Ω2ε) +

∫ t

0

∫

Ω1ε

f1εu1ε dxds +

+

∫ t

0
〈g, P ε

1 u1ε〉H−1(Ω),H1
0
(Ω) ds +

∫ t

0

∫

Ω2ε

f2εu2ε dxds ≤

≤
1

2
‖U0

1ε‖
2
L2(Ω1ε) +

1

2
‖U0

2ε‖
2
L2(Ω2ε) +

∫ t

0
‖f1ε‖L2(Ω1ε)‖u1ε‖L2(Ω1ε) ds+

+

∫ t

0
‖g‖H−1(Ω)‖P

ε
1 u1ε‖H1

0 (Ω) ds +

∫ t

0
‖f2ε‖L2(Ω2ε)‖u2ε‖L2(Ω2ε) ds.

This, together with the properties of Aε and hε given in (2.7)–(2.10), im-
plies that

(3.4)
1

2
‖u1ε(t)‖

2
L2(Ω1ε) +

1

2
‖u2ε(t)‖

2
L2(Ω2ε) + α

∫ t

0

∫

Ω1ε

|∇u1ε|
2 dxds+

+ α

∫ t

0

∫

Ω2ε

|∇u2ε|
2 dxds + εγh0

∫ t

0

∫

Γε

|u1ε − u2ε|
2 dσx ds ≤

≤
1

2
‖U0

1ε‖
2
L2(Ω1ε) +

1

2
‖U0

2ε‖
2
L2(Ω2ε) +

∫ t

0
‖f1ε‖L2(Ω1ε)‖u1ε‖L2(Ω1ε) ds+

+

∫ t

0
‖g‖H−1(Ω)‖P

ε
1 u1ε‖H1

0 (Ω) ds +

∫ t

0
‖f2ε‖L2(Ω2ε)‖u2ε‖L2(Ω2ε) ds.

Now, observe that

(3.5)

∫ t

0
‖fiε‖L2(Ωiε)‖uiε‖L2(Ωiε) ds ≤

1

2

∫ t

0

(
‖fiε‖

2
L2(Ωiε) + ‖uiε‖

2
L2(Ωiε)

)
ds

for i = 1, 2. By Lemma 2.7 and with η = 2α in the Young inequality ab ≤
η
2a2 + 1

2η b2, ∀η > 0, we get
∫ t

0
‖g‖H−1(Ω)‖P

ε
1 u1ε‖H1

0
(Ω) ds ≤

∫ t

0
C‖g‖H−1(Ω)‖∇u1ε‖L2(Ω1ε) ds ≤(3.6)

≤

∫ t

0

C2

4α
‖g‖2

H−1(Ω) ds + α

∫ t

0
‖∇u1ε‖

2
L2(Ω1ε) ds =

=
C2

4α

∫ t

0
‖g‖2

H−1(Ω) ds + α

∫ t

0

∫

Ω1ε

|∇u1ε|
2 dxds.

From (3.4)–(3.6) we obtain

1

2
‖u1ε(t)‖

2
L2(Ω1ε) +

1

2
‖u2ε(t)‖

2
L2(Ω2ε) + α

∫ t

0

∫

Ω1ε

|∇u1ε|
2 dxds ≤
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≤
1

2
‖U0

1ε‖
2
L2(Ω1ε) +

1

2
‖U0

2ε‖
2
L2(Ω2ε) +

1

2

∫ t

0

(
‖f1ε‖

2
L2(Ω1ε) + ‖f2ε‖

2
L2(Ω2ε)

)
ds +

+
1

2

∫ t

0

(
‖u1ε‖

2
L2(Ω1ε) + ‖u2ε‖

2
L2(Ω2ε)

)
ds +

C2

4α

∫ t

0
‖g‖2

H−1(Ω) ds +

+ α

∫ t

0

∫

Ω1ε

|∇u1ε|
2 dxds =

=
1

2
‖U0

ε ‖
2
L2(Ω1ε)×L2(Ω2ε) +

1

2
‖fε‖

2
L2(0,T ; L2(Ω1ε))×L2(0,T ;L2(Ω2ε))+

+
C2

4α
‖g‖2

L2(0,T ; H−1(Ω)) +
1

2

∫ t

0

(
‖u1ε‖

2
L2(Ω1ε) + ‖u2ε‖

2
L2(Ω2ε)

)
ds +

+ α

∫ t

0

∫

Ω1ε

|∇u1ε|
2 dxds.

Simplifying the expression, ∀ t ∈ [0, T ] we have

‖u1ε(t)‖
2
L2(Ω1ε) + ‖u2ε(t)‖

2
L2(Ω2ε) ≤(3.7)

≤ γε +

∫ t

0

(
‖u1ε(τ)‖2

L2(Ω1ε) + ‖u2ε(τ)‖2
L2(Ω2ε)

)
dτ,

where

γε = ‖U0
ε ‖

2
L2(Ω1ε)×L2(Ω2ε) + ‖fε‖

2
L2(0,T ; L2(Ω1ε))×L2(0,T ; L2(Ω2ε))+

+
C2

2α
‖g‖2

L2(0,T ;H−1(Ω)).

Applying Gronwall’s Lemma in (3.7), we deduce that ∀ t ∈ [0, T ] and c inde-
pendent of ε we have

(3.8) ‖u1ε‖
2
L∞(0,T ; L2(Ω1ε)) + ‖u2ε‖

2
L∞(0,T ;L2(Ω2ε)) ≤ eT γε ≤ c,

since γε is bounded by (3.3).
Now, using arguments similar to those that allowed to arrive at (3.6)

with η = α in the Young inequality, we get

∫ t

0
‖g‖H−1(Ω)‖P

ε
1 u1ε‖H1

0 (Ω) ds ≤(3.9)

≤
C

2α

∫ t

0
‖g‖2

H−1(Ω) ds +
α

2

∫ t

0

∫

Ω1ε

|∇u1ε|
2 dxds.
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Consequently, by (3.4), (3.3), (3.8) and (3.9) we claim that

α

∫ T

0
‖∇u1ε‖

2
L2(Ω1ε) ds + α

∫ T

0
‖∇u2ε‖

2
L2(Ω2ε) ds +

+ εγh0

∫ T

0
‖u1ε − u2ε‖

2
L2(Γε) dσx ds =

= α

∫ T

0

∫

Ω1ε

|∇u1ε|
2 dxds + α

∫ T

0

∫

Ω2ε

|∇u2ε|
2 dxds +

+ εγh0

∫ T

0

∫

Γε

|u1ε − u2ε|
2 dσx ds ≤ c.

This completes the proof. �

Corollary 3.6. Under the conditions stated in Proposition 3.5, there
exists a subsequence (still denoted by ε) such that for some u1 ∈ L2(0, T ; H1

0 (Ω))
and u2 ∈ L2(0, T ; L2(Ω)) we have

(i) P ε
1 u1ε ⇀ u1 weakly in L2(0, T ; H1

0 (Ω)),
(ii) ũ1ε ⇀ θ1u1 weakly in L2(0, T ; L2(Ω)) and weakly* in L∞(0, T ; L2(Ω)),
(iii) ũ2ε ⇀ u2 weakly in L2(0, T ; L2(Ω)) and weakly* in L∞(0, T ; L2(Ω)).

Proof. Convergence (iii) is a direct consequence of Proposition 3.5(ii)
while (i) follows from Proposition 3.5(i) and Lemma 2.7. To prove (ii), we use
Lemma 2.10. Let gε = χ

Ω1ε
, hε = P ε

1 u1ε and p = 2. Since

{
P ε

1 u1ε ⇀ u1 weakly in L2(0, T ; H1
0 (Ω)),

χ
Ω1ε

⇀ θ1 weakly in L2(Ω),

by Lemma 2.10, we obtain

ũ1ε = χ
Ω1ε

P ε
1 u1ε ⇀ θ1u1 weakly in L2(0, T ; L2(Ω)).

This gives (ii) by Proposition 3.5(i). �

Another important consequence of Proposition 3.5 is the result below
that makes use of Lemmas 2.4 and 2.5.

Proposition 3.7. Under the assumptions of Proposition 3.5, we have

‖P ε
1 u1ε − u2ε‖L2(0,T ;L2(Ω2ε)) → 0 for all γ < 1.

Proof. Let v = P ε
1 u1ε − u2ε. By Lemma 2.4 we have

‖P ε
1 u1ε − u2ε‖

2
L2(Ω2ε) ≤ C(ε‖u1ε − u2ε‖

2
L2(Γε) + ε2‖∇(P ε

1 u1ε − u2ε)‖
2
L2(Ω2ε)).
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Integrating both sides over ]0, T [ and taking into account 2.5(iii) and Propo-
sition 3.5, we obtain

∫ T

0
‖P ε

1 u1ε − u2ε‖
2
L2(Ω2ε)ds ≤

≤ Cε

∫ T

0
‖u1ε − u2ε‖

2
L2(Γε) ds + Cε2

∫ T

0
(‖∇P ε

1 u1ε‖L2(Ω) + ‖∇u2ε‖L2(Ω2ε))
2 ds

≤ Cε(C1ε
−γ) + C2ε

2

∫ T

0
(‖∇u1ε‖L2(Ω1ε) + ‖∇u2ε‖L2(Ω2ε))

2 ds ≤ C3(ε
1−γ + ε2).

Letting ε → 0, we get ‖P ε
1 u1ε − u2ε‖L2(0,T ; L2(Ω2ε)) → 0 since γ < 1. �

3.3. Some classes of test functions

We apply Tartar’s oscillating test functions method (see [27]) to identify
the limit problems and so we recall the definitions of two classes of suitable
test functions. These functions were already used to study the elliptic cases
in [15] and [24] and the hyperbolic cases in [14].

We recall first the one introduced in [15]. Consider the couple (w1λ, w2λ) ∈
H1(Y1) × H1(Y2) satisfying the system

(3.10)





−div(tA∇w1λ) = 0 in Y1,

−div(tA∇w2λ) = 0 in Y2,
tA∇w1λ · n1 = −tA∇w2λ · n2 on Γ,
tA∇w1λ · n1 = −εγ+1h(w1λ − w2λ) on Γ,

λ · y − w1λ Y -periodic,

mY1
(λ · y − w1λ) = 0,

whose variational formulation is

(3.11)





Find(w1λ, w2λ) in H1(Y1) × H1(Y2)

such that λ · y − w1λ ∈ Wper(Y1) and∫

Y1

tA∇w1λ · ∇v1 dy +

∫

Y2

tA∇w2λ · ∇v2 dy +

+ εγ+1

∫

Γ
h(w1λ − w2λ)(v1 − v2) dσy = 0,

∀ (v1, v2) ∈ Wper(Y1) × H1(Y2),

where

Wper(Y1) =
{
u ∈ H1

per(Y1) | mY1
(u) = 0

}

with the norm ‖u‖Wper
:= ‖∇u‖L2(Y1).
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By definition, wε
iλ is given by

(3.12) wε
iλ(x) := λx − ε(Qi(χiλ)(x/ε)), χiλ = λ · y − wiλ(y), i = 1, 2,

where Qi is given in Lemma 2.5 and with wiλ solutions of problem (3.10).
Note that due to the periodicity of the functions defined in (3.12), clas-

sical arguments apply and one obtains

(3.13)

{
wε

iλ ⇀ λ · x weakly in H1(Ω),

wε
iλ → λ · x strongly in L2(Ω).

Furthermore, let us recall that setting

(3.14) ηε
λ := (ηε

1λ, ηε
2λ) = (tA

ε
∇wε

1λ, tA
ε
∇wε

2λ),

it can be easily checked that, ∀ v = (v1, v2) ∈ Hε
γ , the function ηε

λ satisfies

∫

Ω1ε

ηε
1λ · ∇v1 dx +

∫

Ω2ε

ηε
2λ · ∇v2 dx+(3.15)

+ εγ

∫

Γε

hε(wε
1λ − wε

2λ)(v1 − v2) dσ = 0.

Moreover, the convergences below hold:

• If γ ≤ −1 (see [15, 24]) then

(3.16) η̃ε
1λ + η̃ε

2λ ⇀ tA0
γλ weakly in [L2(Ω)]n.

If γ < −1, A0
γ is defined by

(3.17) tA0
γλ := mY (tA∇Wλ) for all γ < −1,

where, for any λ ∈ Rn, Wλ ∈ H1(Y ) is the solution of the classical problem:

(3.18)





−div(tA∇Wλ) = 0 in Y,

Wλ − λ · y Y -periodic,
1

|Y |

∫

Y
(Wλ − λ · y) dy = 0.

This auxilliary problem is used in the classical homogenization of the
stationary heat equation in the whole domain studied in [2] (see also [9]).

On the other hand, if γ = −1, A0
γ is defined by

(3.19) tA0
γλ := mY (tA(∇̃w1λ + ∇̃w2λ)) for γ = −1,
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where (w1λ, w2λ) ∈ H1(Y1) × H1(Y2) is the solution of the problem

(3.20)





−div(tA1∇w1λ = 0 in Y1,

−div(tA2∇w2λ = 0 in Y2,
tA1∇w1λ · n1 = −tA2∇w2λ · n2 on Γ,
tA1∇w1λ · n1 = −h(w1λ − w2λ) on Γ,

λ · y − w1λ Y -periodic,

mY1
(λ · y − w1λ) = 0.

• If −1 < γ ≤ 1 (see [15]) then

(3.21)

{
(i) η̃ε

1λ ⇀ tA0
γλ weakly in [L2(Ω)]n,

(ii) ε−
γ+1

2 η̃ε
2λ ⇀ 0 weakly in [L2(Ω)]n,

with A0
γ defined by

(3.22) tA0
γλ := mY (tA∇̃wλ) for all − 1 < γ ≤ 1,

where, for any λ ∈ Rn, wλ ∈ H1(Y1) is the solution of the problem

(3.23)





−div(tA∇wλ) = 0 in Y1,

(tA∇wλ) · n1 = 0 in Γ,

wλ − λ · y Y -periodic,
1

|Y1|

∫

Y1

(wλ − λ · y) dy = 0.

By definition, wε
λ is given by

(3.24) wε
λ(x) := λx − ε(Q1(χ1λ)(x/ε)), χ1λ = λ · y − wλ(y),

where Q1 is given in Lemma 2.5 and wλ(y) is the solution of problem (3.23).
By a change in scale (see [10]), it can be shown that

(3.25)

∫

Ω1ε

tA
ε
∇wε

λ · ∇v1 dx = 0, ∀ v1 ∈ V ε,

and

(3.26)





wε
λ ⇀ λ · x weakly in H1(Ω),

wε
λ → λ · x strongly in L2(Ω),

tA
ε
∇̃wε

λ ⇀ tA0
γλ weakly in [L2(Ω)]n,

where A0
γ is defined by (3.22).

We note that wε
λ is used in the classical homogenization of the statio-

nary heat equation on a perforated domain with a Neumann condition on the
boundary of the holes studied in [10].
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4. THE MAIN RESULT

In this section we present the homogenization result and provide a step
by step proof.

4.1. The homogenization theorem

Theorem 4.1. Let Aε and hε be defined by (2.8) and (2.10) respec-
tively. Let uε be the solution of problem (2.12) for γ ≤ 1. Moreover, sup-
pose that (2.11) and (3.3) hold. Then there exists a suitable extension operator
P ε

1 ∈ L(L2(0, T ;V ε);L2(0, T ;H1
0 (Ω))) ∩ L(L2(0, T ; L2(Ω1ε));L

2(0, T ; L2(Ω)))
such that

(4.1)

{
P ε

1 u1ε ⇀ u1 weakly in L2(0, T ; H1
0 (Ω)),

ũ2ε ⇀ u2 weakly∗ in L∞(0, T ; L2(Ω))

and

(4.2) Aε∇̃u1ε + Aε∇̃u2ε ⇀ A0
γ∇u1 weakly in L2(0, T ; [L2(Ω)]n) ∀γ ≤ 1,

where A0
γ is defined by (3.17), (3.19) and (3.22) for the cases γ < −1, γ = −1

and −1 < γ ≤ 1 respectively.
In particular, if −1 < γ ≤ 1 then

(4.3)

{
Aε∇̃u1ε ⇀ A0

γ∇u1 weakly in L2(0, T ; [L2(Ω)]n),

Aε∇̃u2ε ⇀ 0 weakly in L2(0, T ; [L2(Ω)]n).

Moreover, the limit functions u1 and u2 can be described as follows:

• Case γ < 1. We have u2 = θ2u1.
The factor θ2 is given by (2.2) and u1 is the unique solution of the ho-

mogenized problem

(4.4)





u′
1 − div(A0

γ∇u1) = θ1f1 + θ2f2 + g in Ω×]0, T [,

u1 = 0 on ∂Ω×]0, T [,

u1(0) = θ1U
0
1 + θ2U

0
2 in Ω.

• Case γ = 1. The couple (u1, u2) is the unique solution of the problem
(a PDE coupled with an ODE)

(4.5)





θ1u
′
1 − div(A0

γ∇u1) + ch(θ2u1 − u2) = θ1f1 + g in Ω×]0, T [,

u′
2 − ch(θ2u1 − u2) = θ2f2 in Ω×]0, T [,

u1 = 0 on ∂Ω×]0, T [,

u1(0) = U0
1 , u2(0) = θ2U

0
2 in Ω,
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where ch = 1
|Y2|

∫
γ h(y) dσy. Moreover, solving the ODE and replacing in the

PDE yield

(4.6) θ1u
′
1 − div(A0

γ∇u1) + chθ2u1 − c2
hθ2

∫ t

0
K(t, s)u1(s) ds = F (x, t),

where

(4.7) F (x, t) = θ1f1(x, t) + g + chθ2U
0
2 e−cht + ch

∫ t

0
K(t, s)θ2f2(x, s) ds

and K is an exponential kernel given by

(4.8) K(t, s) = ech(s−t).

4.2. Proof of the main result

We first prove the next result which play an essential role in proving the
main result.

Lemma 4.2. Let ϕ ∈ D(0, T ) and v ∈ D(Ω). Suppose P ε
1 is the extension

operator described in Lemma 2.7. If {uε} = (u1ε, u2ε) is the subsequence given
in Corollary 3.6, then

lim
ε→0

(∫ T

0

∫

Ω
η̃ε
1λ∇vP ε

1 u1εϕdxdt +

∫ T

0

∫

Ω
η̃ε
2λ∇vũ2εϕdxdt

)
=

=

∫ T

0

∫

Ω

tA0
γλ∇vu1ϕdxdt

for every γ ≤ 1 and for all λ ∈ Rn.

Proof. Case −1 < γ ≤ 1. Observe that by (3.21)(ii) we have

‖η̃ε
2λ‖L2(Ω) ≤ ε

γ+1

2 .

Since γ + 1 > 0, we get

‖η̃ε
2λ‖L2(Ω) → 0.

By Hölder inequality and Proposition 3.5 we have
∣∣∣∣
∫ T

0

∫

Ω
η̃ε
2λ∇vũ2εϕdxdt

∣∣∣∣ → 0.

It remains to show that
∫ T

0

∫

Ω
η̃ε
1λ∇vP ε

1 u1εϕdxdt →

∫ T

0

∫

Ω

tA0
γλ∇vu1ϕdxdt, ∀λ ∈ Rn.
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Using Lemma 2.10 with hε = P ε
1 u1ε and gε = η̃ε

1λ (independent of t), by
(3.21)(i) and Corollary 3.6 we have

{
η̃ε
1λ ⇀ tA0

γλ weakly in [L2(Ω)]n,

P ε
1 u1ε ⇀ u1 weakly in L2(0, T ; H1

0 (Ω)).

Therefore, letting ε → 0 we get the desired result.
Case γ ≤ −1. Note that

∫ T

0

∫

Ω
η̃ε
1λ∇vP ε

1 u1εϕdxdt +

∫ T

0

∫

Ω
η̃ε
2λ∇vũ2εϕdxdt =

=

∫ T

0

∫

Ω
(η̃ε

1λ + η̃ε
2λ)∇vP ε

1 u1εϕdxdt +

∫ T

0

∫

Ω
η̃ε
2λ∇v(ũ2ε − P ε

1 u1ε)ϕdxdt.

But, by Proposition 3.7,

‖P ε
1 u1ε − u2ε‖L2(0,T ; L2(Ω2ε)) → 0.

Hence, by Hölder inequality and (3.13),
∫ T

0

∫

Ω
η̃ε
2λ∇v(ũ2ε − P ε

1 u1ε)ϕdxdt → 0.

To conclude, we use again Lemma 2.10. Let hε = P ε
1 u1ε and gε = η̃ε

1λ + η̃ε
2λ

(independent of t). Then, by (3.16) and Corollary 3.6,
{

η̃ε
1λ + η̃ε

2λ ⇀ tA0
γλ weakly in [L2(Ω)]n,

P ε
1 u1ε ⇀ u1 weakly in L2(0, T ; H1

0 (Ω)).

Letting ε → 0, for all λ ∈ Rn we have
∫ T

0

∫

Ω
(η̃ε

1λ + η̃ε
2λ)∇vP ε

1 u1εϕdxdt →

∫ T

0

∫

Ω

tA0
γλ∇vu1ϕdxdt. �

In proving Theorem 4.1, both cases will be considered simultaneously.
We’ll treat them separately only when necessary. Let uε be the solution of
problem (2.12) for any value of γ ≤ 1. We adapt some techniques used in [14]
and [15]. Set

(4.9) ξε := (ξ1ε, ξ2ε) = (Aε∇u1ε, A
ε∇u2ε).

If follows from Proposition 3.5 that, up to a subsequence,

(4.10) ξ̃iε ⇀ ξi weakly* in L2(0, T ; [L2(Ω)]n), i = 1, 2.

The main idea of the proof is to identify ξ1 and ξ2 and find the limit
functions u1 and u2 which change according to the values of γ.

Proof of Theorem 4.1. The proof will be divided into six steps.
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Step 1. Determine the equation satisfied by ξ1 + ξ2.
Let ϕ ∈ D(0, T ) and v ∈ D(Ω). In the variational formulation (2.14), use

(v|Ω1ε
ϕ, v|Ω2ε

ϕ) as test function, so that

〈u′
1ε, vϕ〉(V ε)′,V ε + 〈u′

2ε, vϕ〉(H1(Ω2ε))′,H1(Ω2ε) +

+

∫

Ω1ε

Aε∇u1ε∇v ϕdx +

∫

Ω2ε

Aε∇u2ε∇v ϕdx =

=

∫

Ω1ε

f1εvϕdx + 〈g, P ε
1 ((vϕ)|Ω1ε

)〉H−1(Ω),H1
0 (Ω) +

∫

Ω2ε

f2εvϕdx.

Integrating both sides with respect to t and, extending to the whole of
Ω, by (4.9) we have

−

∫ T

0

∫

Ω
(ũ1ε + ũ2ε)vϕ′ dxdt +

∫ T

0

∫

Ω
ξ̃1ε∇v ϕdxdt +

∫ T

0

∫

Ω
ξ̃2ε∇v ϕdxdt =

=

∫ T

0

∫

Ω
(f̃1ε + f̃2ε)vϕdxdt +

∫ T

0
〈g, P ε

1 ((vϕ)|Ω1ε
)〉H−1(Ω),H1

0 (Ω) dt

for every ϕ ∈ D(0, T ) and v ∈ D(Ω).
Letting ε → 0, by (4.10), (3.3), Corollary 3.6 and Corollary 2.8 (with

vε = vϕ), we obtain

(4.11) −

∫ T

0

∫

Ω
(θ1u1+u2)vϕ′ dxdt+

∫ T

0

∫

Ω
ξ1∇v ϕdxdt+

∫ T

0

∫

Ω
ξ2∇v ϕdxdt

=

∫ T

0

∫

Ω
(θ1f1 + θ2f2)vϕdxdt +

∫ T

0
〈g, vϕ〉H−1(Ω),H1

0
(Ω) dt.

Since ϕ and v are arbitrary, the equation satisfied by ξ1 + ξ2 is

(4.12) θ1u
′
1 + u′

2 − div(ξ1 + ξ2) = θ1f1 + θ2f2 + g.

Step 2. Identify ξ1 + ξ2.
Let ϕ ∈ D(0, T ) and v ∈ D(Ω). In the variational formulation (2.14),

choose (vwε
1λ|Ω1ε

ϕ, vwε
2λ|Ω2ε

ϕ) as test function, where wε
iλ, i = 1, 2 are defined

in (3.12). Then, for every ϕ ∈ D(0, T ) and v ∈ D(Ω),

−

∫ T

0

∫

Ω1ε

u1εw
ε
1λvϕ′ dxdt −

∫ T

0

∫

Ω2ε

u2εw
ε
2λvϕ′ dxdt +

+

∫ T

0

∫

Ω1ε

ξ1ε∇vwε
1λϕdxdt +

∫ T

0

∫

Ω1ε

ξ1ε∇wε
1λvϕdxdt +

+

∫ T

0

∫

Ω2ε

ξ2ε∇vwε
2λϕdxdt +

∫ T

0

∫

Ω2ε

ξ2ε∇wε
2λvϕdxdt +

+ εγ

∫ T

0

∫

Γε

hε(u1ε − u2ε)(w
ε
1λ − wε

2λ)vϕdσx dt =
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=

∫ T

0

∫

Ω1ε

f1εvwε
1λϕdxdt +

∫ T

0

∫

Ω2ε

f2εvwε
2λϕdxdt +

+

∫ T

0
〈g, P ε

1 ((vwε
1λϕ)|Ω1ε

)〉H−1(Ω),H1
0 (Ω) dt.

Now, put (v1, v2) = (v|Ω1ε
u1εϕ, v|Ω2ε

u2εϕ) in (3.15) and integrate over ]0, T [.
Then ∫ T

0

∫

Ω1ε

ηε
1λ∇vu1εϕdxdt +

∫ T

0

∫

Ω1ε

ηε
1λ∇u1εvϕdxdt +

+

∫ T

0

∫

Ω2ε

ηε
2λ∇vu2εϕdxdt

∫ T

0

∫

Ω2ε

ηε
2λ∇u2εvϕdxdt +

+ εγ

∫ T

0

∫

Γε

hε(wε
1λ − wε

2λ)(u1ε − u2ε)vϕdσx dt = 0

for every ϕ ∈ D(0, T ) and v ∈ D(Ω). Subtract the second equation from the
first one and pass to the whole of Ω, recalling definitions (3.14) and (4.9).
Since the boundary terms cancel, this will yield

−

∫ T

0

∫

Ω
(ũ1εw

ε
1λ + ũ2εw

ε
2λ)vϕ′ dxdt +

∫ T

0

∫

Ω
ξ̃1ε∇vwε

1λϕdxdt +

+

∫ T

0

∫

Ω
ξ̃2ε∇vwε

2λϕdxdt −

∫ T

0

∫

Ω
η̃ε
1λ∇vP ε

1 u1εϕdxdt −

∫ T

0

∫

Ω
η̃ε
2λ∇vũ2εϕdxdt

=

∫ T

0

∫

Ω
f̃1εvwε

1λϕdxdt +

∫ T

0

∫

Ω
f̃2εvwε

2λϕdxdt +

+

∫ T

0
〈g, P ε

1 ((vwε
1λϕ)|Ω1ε

)〉H−1(Ω),H1
0
(Ω) dt

for every ϕ ∈ D(0, T ) and v ∈ D(Ω).
The next step is to let ε → 0. All the limits are straightforward us-

ing (4.10), (3.13), (3.3), Corollary 3.6 and Corollary 2.8 (with vε = vwε
1λϕ).

For the fourth and fifth integrals on the left-hand side, we apply Lemma 4.2
to obtain

−

∫ T

0

∫

Ω
(θ1u1 + u2)(λ · x)vϕ′ dxdt +

∫ T

0

∫

Ω
(ξ1 + ξ2)∇v(λ · x)ϕdxdt −

−

∫ T

0

∫

Ω

tA0
γλ∇vu1ϕdxdt =

=

∫ T

0

∫

Ω
(θ1f1 + θ2f2)(λ · x)vϕdxdt +

∫ T

0
〈g, (λ · x)vϕ〉H−1(Ω),H1

0 (Ω) dt

for every ϕ ∈ D(0, T ) and v ∈ D(Ω), where A0
γ is defined according to the

values of γ by (3.17), (3.19) and (3.22).
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It then follows that

−

∫ T

0

∫

Ω
(θ1u1 + u2)(λ · x)vϕ′ dxdt +

∫ T

0

∫

Ω
(ξ1 + ξ2)∇[v(λ · x)]ϕdxdt −

−

∫ T

0

∫

Ω
(ξ1 + ξ2)vλϕdxdt +

∫ T

0

∫

Ω

tA0
γλ∇u1vϕdxdt =

=

∫ T

0

∫

Ω
(θ1f1 + θ2f2)(λ · x)vϕdxdt +

∫ T

0
〈g, (λ · x)vϕ〉H−1(Ω),H1

0 (Ω) dt.

On account of (4.11) written with v(λ · x) instead of v, we have
∫ T

0

∫

Ω
(ξ1 + ξ2)λvϕdxdt =

∫ T

0

∫

Ω

tA0
γλ∇u1vϕdxdt.

Since λ, ϕ and v are arbitrary, we identify

(4.13) ξ1 + ξ2 = A0
γ∇u1.

Step 3. Identify ξ1 and ξ2 separately for the case −1 < γ ≤ 1.
As shown previously, ξ1 + ξ2 = A0

γ∇u1 holds for every γ ≤ 1. The task
is now to describe ξ1 and ξ2 separately for the case −1 < γ ≤ 1.

For this purpose, let ϕ ∈ D(0, T ), v ∈ D(Ω) and wε
λ be defined by (3.24).

Take ((vwε
λ)|Ω1ε

ϕ, (v(λ·x))|Ω2ε
ϕ) as test function in the variational formulation

(2.14). For every ϕ ∈ D(0, T ) and v ∈ D(Ω) we have

−

∫ T

0

∫

Ω1ε

u1εvwε
λϕ′ dxdt −

∫ T

0

∫

Ω2ε

u2εv(λ · x)ϕ′ dxdt +

+

∫ T

0

∫

Ω1ε

ξ1ε∇vwε
λϕdxdt +

∫ T

0

∫

Ω1ε

ξ1ε∇wε
λvϕdxdt +

+

∫ T

0

∫

Ω2ε

ξ2ε∇[v(λ ·x)]ϕdxdt+ εγ

∫ T

0

∫

Γε

hε(u1ε−u2ε)(w
ε
λ−λ ·x)vϕdσx dt =

=

∫ T

0

∫

Ω1ε

f1εvwε
λϕdxdt +

∫ T

0

∫

Ω2ε

f2εv(λ · x)ϕdxdt +

+

∫ T

0
〈g, P ε

1 ((vwε
λϕ)|Ω1ε

)〉H−1(Ω),H1
0 (Ω) dt.

Choose v1 = v|Ω1ε
u1εϕ in (3.25) and integrate over ]0, T [ to get

∫ T

0

∫

Ω1ε

tA
ε
∇wε

λ∇vu1εϕdxdt +

∫ T

0

∫

Ω1ε

tA
ε
∇wε

λ∇u1εvϕdxdt = 0

for every ϕ ∈ D(0, T ) and v ∈ D(Ω).
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Subtract the second from the first equation and extend to the whole of
Ω taking into account (4.9). This yields

(4.14) −

∫ T

0

∫

Ω
ũ1εw

ε
λvϕ′ dxdt −

∫ T

0

∫

Ω
ũ2ε(λ · x)vϕ′ dxdt +

+

∫ T

0

∫

Ω
ξ̃1ε∇vwε

λϕdxdt +

∫ T

0

∫

Ω
ξ̃2ε∇[v(λ · x)]ϕdxdt −

−

∫ T

0

∫

Ω

tA
ε
∇̃wε

λ∇vP ε
1 u1εϕdxdt+εγ

∫ T

0

∫

Γε

hε(u1ε−u2ε)(w
ε
λ−λ·x)vϕdσx dt =

=

∫ T

0

∫

Ω
f̃1εvwε

λϕdxdt +

∫ T

0

∫

Ω
f̃2εv(λ · x)ϕdxdt +

+

∫ T

0
〈g, P ε

1 ((vwε
λϕ)|Ω1ε

)〉H−1(Ω),H1
0 (Ω) dt

for every ϕ ∈ D(0, T ) and v ∈ D(Ω).
Our first concern is the behavior of the integral over Γε. As ε → 0 we

show that

(4.15) εγ

∫ T

0

∫

Γε

hε(u1ε − u2ε)(w
ε
λ − λ · x)vϕdσx dt → 0.

By definition (3.24), (2.10) and Proposition 3.5(iii), a change of scale yields
∣∣∣∣ε

γ

∫ T

0

∫

Γε

hε(u1ε − u2ε)(w
ε
λ − λ · x)vϕdσx dt

∣∣∣∣ =

=

∣∣∣∣ε
γ

∫ T

0

∫

Γε

εhε(u1ε − u2ε)χ1λ(x/ε)vϕdσx dt

∣∣∣∣ ≤

≤ Cεγ+1ε−γ/2‖χ1λ(x/ε)‖L2(Γε) ≤ Cεγ+1ε−γ/2ε−1/2 → 0

as ε → 0, since γ > −1.
Now, let ε → 0 in (4.14) and use (4.10), (3.26), (4.15), (3.3), Corol-

lary 3.6, Lemma 2.10 (with hε = P ε
1 u1ε and gε = tA

ε
∇̃wε

λ) and Corollary 2.8
(with vε = vwε

λϕ) to obtain

−

∫ T

0

∫

Ω
(θ1u1 + u2)(λ · x)vϕ′ dxdt +

∫ T

0

∫

Ω
ξ1∇v(λ · x)ϕdxdt +

+

∫ T

0

∫

Ω
ξ2∇[v(λ · x)]ϕdxdt −

∫ T

0

∫

Ω

tA0
γλ∇vu1ϕdxdt =

=

∫ T

0

∫

Ω
(θ1f1 + θ2f2)(λ · x)vϕdxdt +

∫ T

0
〈g, (λ · x)vϕ〉H−1(Ω),H1

0 (Ω) dt
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for every ϕ ∈ D(0, T ) and v ∈ D(Ω), where A0
γ is defined by (3.22). This gives

−

∫ T

0

∫

Ω
(θ1u1 + u2)(λ · x)vϕ′ dxdt +

∫ T

0

∫

Ω
ξ1∇[v(λ · x)]ϕdxdt −

−

∫ T

0

∫

Ω
ξ1λvϕdxdt +

∫ T

0

∫

Ω
ξ2∇[v(λ · x)]ϕdxdt +

∫ T

0

∫

Ω

tA0
γλ∇u1vϕdxdt =

=

∫ T

0

∫

Ω
(θ1f1 + θ2f2)(λ · x)vϕdxdt +

∫ T

0
〈g, (λ · x)vϕ〉H−1(Ω),H1

0
(Ω) dt

for every ϕ ∈ D(0, T ) and v ∈ D(Ω) since A0
γ is constant. It then follows from

(4.11), written with v(λ · x) instead of v, that
∫ T

0

∫

Ω
ξ1λvϕdxdt =

∫ T

0

∫

Ω

tA0
γλ∇u1vϕdxdt.

Since λ, ϕ and v are arbitrary, we have

(4.16) ξ1 = A0
γ∇u1.

By (4.13) and (4.16) it is obvious that

(4.17) ξ2 = 0.

Step 4. Describe the limit function u2 in terms of u1 for the two cases
γ < 1 and γ = 1.

In the following we treat the two cases γ < 1 and γ = 1 separately. We
employ the same method as in the proof of the elliptic and hyperbolic problem
given in [14] and [15].

First, we consider the case γ < 1. Observe that
∫ T

0

∫

Ω
ũ2εϕdxdt =

∫ T

0

∫

Ω2ε

(u2ε − P ε
1 u1ε)ϕdxdt +

∫ T

0

∫

Ω2ε

P ε
1 u1εϕdxdt

for all ϕ ∈ L2(0, T ; L2(Ω)). By Proposition 3.7, ‖P ε
1 u1ε−u2ε‖L2(0,T ; L2(Ω2ε)) →

0. So, by Hölder inequality we have

(4.18)

∫ T

0

∫

Ω2ε

(u2ε − P ε
1 u1ε)ϕdxdt → 0.

Using (4.18) and evaluating the limit by (2.2), Corollary 3.6 and Lemma 2.10
(with hε = P ε

1 u1ε and gε = χ
Ω2ε

), we have

lim
ε→0

∫ T

0

∫

Ω
ũ2εϕdxdt = lim

ε→0

∫ T

0

∫

Ω
χ

Ω2ε
P ε

1 u1εϕdxdt =

∫ T

0

∫

Ω
θ2u1ϕdxdt.

Since ϕ is arbitrary,

(4.19) ũ2ε ⇀ θ2u1.
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By the uniqueness of the weak limit, u2 = θ2u1. Replacing this in (4.12) and
using (4.13) yields

(4.20) u′
1 − div(A0

γ∇u1) = θ1f1 + θ2f2 + g.

Now, suppose that γ = 1. Let ϕ ∈ D(0, T ) and v ∈ D(Ω). Choose
(0, v|Ω2ε

ϕ) in the variational formulation (2.14) and extend to the whole of Ω
so that

(4.21) −

∫ T

0

∫

Ω
ũ2εvϕ′ dxdt +

∫ T

0

∫

Ω
Aε∇̃u2ε∇vϕdxdt −

− ε

∫ T

0

∫

Γε

hε(u1ε − u2ε)vϕdσx dt =

∫ T

0

∫

Ω
f̃2εvϕdxdt.

To evaluate the limit of the last integral on the left, we use Lemma 2.9 with
g = hε, vε = ((P ε

1 u1ε)|Ω2ε
− u2ε)v|Ω2ε

ϕ and ch = 1
|Y2|

∫
Γ h(y) dσy. Since

ṽε = (χ
Ω2ε

P ε
1 u1ε − ũ2ε)vϕ → (θ2u1 − u2)vϕ in L2(0, T ; L2(Ω)),

we have

lim
ε→0

ε

∫ T

0

∫

Γε

hε(P ε
1 u1ε − u2ε)vϕdσx dt = ch

∫ T

0

∫

Ω
(θ2u1 − u2)vϕdxdt.(4.22)

Letting ε → 0 in (4.21) and using Corollary 3.6, (4.17), (4.22) and (3.3)
will yield

−

∫ T

0

∫

Ω
u2vϕ′ dxdt − ch

∫ T

0

∫

Ω
(θ2u1 − u2)vϕdxdt =

∫ T

0

∫

Ω
θ2f2vϕdxdt.

By the arbitrariness of ϕ and v, we get

(4.23) u′
2 − ch(θ2u1 − u2) = θ2f2.

This, replaced in (4.12), and (4.13) yield

(4.24) θ1u
′
1 − div(A0

γ∇u1) + ch(θ2u1 − u2) = θ1f1 + g.

Step 5. Verify if u1 and u2 satisfy the initial conditions given in (4.4)
and (4.5), respectively.

First of all, let us check that u1(0) and u2(0) make sense in L2(Ω). If
γ < 1 then by (4.20) one has

u′
1 = div(A0

γ∇u1) + θ1f1 + θ2f2 + g ∈ L2(0, T ; H−1(Ω)).

Hence, by Proposition 3.2 written for V = H1
0 (Ω) and H = L2(Ω), one has

u1 ∈ C0([0, T ];L2(Ω)). So, u1(0) and u2(0) = θ2u1(0) are defined in L2(Ω).
If γ = 1 then it follows from (4.23) that u′

2 = ch(θ2u1 − u2) + θ2f2

is in L2(0, T ; L2(Ω)), since u1 and u2 are both in L2(0, T ; L2(Ω)). Classical
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embedding results imply that u2 ∈ C0([0, T ];L2(Ω)) and u2(0) makes sense in
L2(Ω). On the other hand, from (4.24) we get

u′
1 = θ−1

1 (div(A0
γ∇u1) − ch(θ2u1 − u2) + θ1f1 + g) ∈ L2(0, T ; H−1(Ω)).

Again, it follows by Proposition 3.2 that u1 ∈ C0([0, T ];L2(Ω)) and u1(0) is
defined in L2(Ω).

Suppose v ∈ D(Ω) and ϕ ∈ C∞([0, T ]) with ϕ(T ) = 0 and ϕ(0) = 1. In
the variational formulation (2.14), set (v|Ω1ε

ϕ, v|Ω2ε
ϕ) as test function, so that

(4.25)

∫ T

0
〈u′

1ε, v〉(V ε)′,V εϕdt +

∫ T

0
〈u′

2ε, v〉(H1(Ω2ε))′,H1(Ω2ε)ϕdt +

+

∫ T

0

∫

Ω1ε

Aε∇u1ε∇vϕdxdt +

∫ T

0

∫

Ω2ε

Aε∇u2ε∇vϕdxdt =

=

∫ T

0

∫

Ω1ε

f1εvϕdxdt+

∫ T

0
〈g, P ε

1 (v|Ω1ε
)〉H−1(Ω),H1

0
(Ω)ϕdt+

∫ T

0

∫

Ω2ε

f2εvϕdxdt.

However, integrating by parts, since ϕ(0) = 1, we get
(4.26)




∫ T

0
〈u′

1ε, v〉(V ε)′,V εϕdt = −

∫

Ω1ε

U0
1εv dx −

∫ T

0

∫

Ω1ε

u1εvϕ′ dxdt,

∫ T

0
〈u′

2ε, v〉(H1(Ω2ε))′,H1(Ω2ε)ϕdt= −

∫

Ω2ε

U0
2εv dx−

∫ T

0

∫

Ω2ε

u2εvϕ′ dxdt.

Substituting (4.26) in (4.25) and extending to the whole of Ω, we can rewrite
(4.25) as

−

∫

Ω
Ũ0

1εv dx −

∫

Ω
Ũ0

2εv dx −

∫ T

0

∫

Ω
ũ1εvϕ′ dxdt −

∫ T

0

∫

Ω
ũ2εvϕ′ dxdt +

+

∫ T

0

∫

Ω
Aε∇̃u1ε∇vϕdxdt +

∫ T

0

∫

Ω
Aε∇̃u2ε∇vϕdxdt =

=

∫ T

0

∫

Ω
f̃1εvϕdxdt+

∫ T

0
〈g, P ε

1 (v|Ω1ε
)〉H−1(Ω),H1

0 (Ω)ϕdt+

∫ T

0

∫

Ω
f̃2εvϕdxdt.

Letting ε → 0 and using (2.2), (3.3), (4.13), Corollary 3.6 and Corol-
lary 2.8 (with vε = v) we obtain

−

∫

Ω
(θ1U

0
1 + θ2U

0
2 )v dx−

∫ T

0

∫

Ω
(θ1u1 + u2)vϕ′ dxdt +

∫ T

0

∫

Ω
A0

γ∇u1∇vϕdxdt

(4.27) =

∫ T

0

∫

Ω
(θ1f1 + θ2f2)vϕdxdt +

∫ T

0
〈g, v〉H−1(Ω),H1

0 (Ω)ϕdt.
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In the same manner, using (4.11) and (4.13) with ϕ(0) = 1, we see that

−

∫

Ω
(θ1u1(0)+u2(0))v dx−

∫ T

0

∫

Ω
(θ1u1+u2)vϕ′ dxdt+

∫ T

0

∫

Ω
A0

γ∇u1∇vϕdxdt

(4.28) =

∫ T

0

∫

Ω
(θ1f1 + θ2f2)vϕdxdt +

∫ T

0
〈g, v〉H−1(Ω),H1

0 (Ω)ϕdt.

Since v and ϕ are arbitrary, from (4.27) and (4.28) we conclude that

(4.29) θ1u1(0) + u2(0) = θ1U
0
1 + θ2U

0
2 .

We now check the conditions separately for the cases γ < 1 and γ = 1.

Case γ < 1. Since u2 = θ2u1 by (4.19), from (4.29) we have

u1(0) = θ1u1(0) + θ2u1(0) = θ1U
0
1 + θ2U

0
2 .

Case γ = 1. Let v ∈ D(Ω) and ϕ ∈ C∞([0, T ]) with ϕ(T ) = 0 and
ϕ(0) = 1. In the variational formulation (2.14), consider (v|Ω1ε

ϕ, 0) as test
function. Using arguments similar to those already used yields

−

∫

Ω
Ũ0

1εv dx −

∫ T

0

∫

Ω
ũ1εvϕ′ dxdt +

∫ T

0

∫

Ω
Aε∇̃u1ε∇vϕdxdt +

+ ε

∫ T

0

∫

Γε

hε(u1ε − u2ε)vϕdσx dt =

=

∫ T

0

∫

Ω
f̃1εvϕdxdt +

∫ T

0
〈g, P ε

1 (v|Ω1ε
)〉H−1(Ω),H1

0 (Ω)ϕdt.

Letting ε → 0 by using (3.3), (4.10), (4.16), (4.22), Corollary 3.6 and
Corollary 2.8 (with vε = v), we get

(4.30) −

∫

Ω
θ1U

0
1 v dx −

∫ T

0

∫

Ω
θ1u1vϕ′ dxdt +

+

∫ T

0

∫

Ω
A0

γ∇u1∇vϕdxdt + ch

∫ T

0

∫

Ω
(θ2u1 − u2)vϕdxdt =

=

∫ T

0

∫

Ω
θ1f1vϕdxdt +

∫ T

0
〈g, v〉H−1(Ω),H1

0
(Ω)ϕdt.

Subtracting (4.28) from (4.30), we obtain

(4.31) −

∫

Ω
θ1U

0
1 v dx + ch

∫ T

0

∫

Ω
(θ2u1 − u2)vϕdxdt +

∫

Ω
θ1u1(0)v dx +

+

∫

Ω
u2(0)v dx +

∫ T

0

∫

Ω
u2vϕ′ dxdt = −

∫ T

0

∫

Ω
θ2f2vϕdxdt.
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By (4.29) and (4.23) we have, respectively,

(4.32)





∫

Ω
θ1u1(0)v dx +

∫

Ω
u2(0)v dx =

∫

Ω
(θ1U

0
1 + θ2U

0
2 )v dx,

ch

∫ T

0

∫

Ω
(θ2u1 − u2)vϕdxdt =

=

∫ T

0

∫

Ω
u′

2vϕdxdt −

∫ T

0

∫

Ω
θ2f2vϕdxdt

= −

∫ T

0

∫

Ω
u2vϕ′ dxdt −

∫ T

0

∫

Ω
θ2f2vϕdxdt.

Since ϕ(T ) = 0 and ϕ(0) = 1, replacing (4.32) in (4.31), we obtain
∫

Ω
θ2U

0
2 v dx −

∫

Ω
u2(0)v dx = 0.

Therefore, u2(0) = θ2U
0
2 . This together with (4.29) yield u1(0) = U0

1 .

Step 6. Conclusion.
For both cases, Corollary 3.6 ensures (4.1) up to a subsequence. On the

other hand, (4.13) shows (4.2) and, moreover, for the case −1 < γ ≤ 1, (4.16)
and (4.17) assert (4.3) for a subsequence.

Now, for the case γ < 1, Steps 4 and 5 imply that the limit function u1

in (4.1) satisfies (4.4). The latter has a unique solution since the homogenized
matrix A0

γ is positive definite. Hence, all the convergences involved hold for
the whole sequences.

Similarly, for the case γ = 1, Steps 4 and 5 show that the limit functions
u1 and u2 satisfy (4.5). To complete the proof, we have to show that the
solution (u1, u2) to (4.5) is unique.

To do that, observe that in the equation u′
2 − ch(θ2u1 − u2) = θ2f2, u2

can be computed in terms of u1. Indeed,

u2(x, t) = θ2U
0
2 e−cht +

∫ t

0
K(t, s)(chθ2u1(x, s) + θ2f2(x, s)) ds

where K(t, s) = ech(s−t) and ch = 1
|Y2|

∫
γ h(y) dσy. Substituting this in the first

equation of (4.5), we get

θ1u
′
1 − div(A0

γ∇u1) + chθ2u1 − chθ2U
0
2 e−cht −

− ch

∫ t

0
K(t, s)(chθ2u1(x, s) + θ2f2(x, s)) ds = θ1f1(x, t) + g.

Rewriting the expression yields

θ1u
′
1 − div(A0

γ∇u1) + chθ2u1 − c2
hθ2

∫ t

0
K(t, s)u1(x, s)ds = F (x, t),
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where

F (x, t) = θ1f1(x, t) + g + chθ2U
0
2 e−cht + ch

∫ t

0
K(t, s)θ2f2(x, s)ds.

So (4.5) can be expressed as

(4.33)





θ1u
′
1 − div(A0

γ∇u1) + chθ2u1−

−c2
hθ2

∫ t

0
K(t, s)u1(x, s)ds = F (x, t) in Ω×]0, T [,

u′
2 − ch(θ2u1 − u2) = θ2f2 in Ω×]0, T [,

u1 = 0 on ∂Ω×]0, T [,

u1(0) = U0
1 , u2(0) = θ2U

0
2 in Ω.

We now use Theorem 3.1 to show that (4.33) has a unique solution.
Accordingly, let

V = H1
0 (Ω), H = L2(Ω), b = F, u0 = U0

1 ∈ H1
0 (Ω)

and define

a(u, v, t) =

∫

Ω
A0

γ∇u∇v dx +

∫

Ω
chθ2uv dx − c2

hθ2

∫

Ω

∫ t

0
K(t, s)uv ds dx

for every u, v ∈ H1
0 (Ω).

Since g(u) = c2
hθ2

∫ t
0 K(t, s)u(x, s)ds is linear and continuous from

L2(0, T ; L2(Ω)) into itself, by Theorem 3.1, there exists a unique solution
to problem (4.33). This completes the proof. �

Acknowledgements. The author wishes to express her thanks and gratitude to
Prof. Patrizia Donato who introduced her to the problem for many stimulating con-
versations and helpful comments. This work would not have been possible without
the financial support from the University of the Philippines and the hospitality of the
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