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1. INTRODUCTION

1.1. Notation and de�nitions

Let B be the unit ball in the complex vector space Cn, O(B) denotes the
space of functions that are holomorphic in B, with the compact-open topology,
and H∞(B) denotes the Banach space of bounded holomorphic functions on B
with the norm ‖f‖∞ = supz∈B |f(z)|.

If z = (z1, z2, . . . , zn), ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn, then 〈z, ζ〉 = z1ζ̄1 + · · ·+
znζ̄n and |z| = (z1z̄1 + · · ·+ znz̄n)1/2.

Let p > 0, the Beurling-type space (sometime also called the Bergman-
type space) A−p(B) in the unit ball is de�ned as

A−p(B) :=

{
f(z) ∈ O(B) : |f |p = sup

z∈B
|f(z)|(1− |z|2)p <∞

}
.

For a holomorphic self-mapping ϕ of B and a holomorphic function u :
B→ C, the linear operator Wu,ϕ : O(B)→ O(B)

Wu,ϕ(f)(z) = u(z) · (f ◦ ϕ(z)), f ∈ O(B), z ∈ B,

is called the weighted composition operator with symbols u and ϕ. Observe
that Wu,ϕ(f) = MuCϕ(f), where Mu(f) = uf , is the multiplication operator

with symbol u, and Cϕ(f) = f ◦ ϕ is the composition operator with symbol ϕ.
If u is identically 1, then Wu,ϕ = Cϕ, and if ϕ is the identity, then Wu,ϕ = Mu.
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Composition operators and weighted composition operators acting on
spaces of holomorphic functions in the unit disk D of the complex plane have
been studied quite well. We refer the readers to the monographs [2, 9] for
detailed information. Composition operators on A−p(D) have also been inten-
sively studied (see, e.g., [5] and references therein).

1.2. Np-spaces in the unit ball

Given a point a ∈ B, we can associate to it the automorphism Φa ∈ Aut(B)
(see, e.g., [8], Section 2.2). In [7], we introduce the Np-spaces in B for p > 0,
which is de�ned as follows:

Np(B) :=

{
f ∈ O(B) : ‖f‖p = sup

a∈B

(∫
B
|f(z)|2(1− |Φa(z)|2)p dV (z)

)
1/2<∞

}
,

where dV is the Lebesgue normalized volume measure on B (i.e. V (B) = 1).

Several important properties of the Np-spaces, and of the weighted com-
position operators from Np-spaces to the spaces A−q have been characterized
in [7]. We cite here main results from [7] for the reader's convenience.

Theorem 1.1. The following statements hold:

(a) For p > q > 0, we have H∞(B) ↪→ Nq(B) ↪→ Np(B) ↪→ A−
n+1
2 (B), where

the last embedding is given by |f |n+1
2
≤ 2p+n

3p/2
‖f‖p,∀f ∈ Np(B).

(b) For p > 0, if p > 2k − 1, k ∈ (0, n+1
2 ], then A−k(B) ↪→ Np(B). In

particular, when p > n, all Np(B) = A−
n+1
2 (B).

(c) Np(B) is a functional Banach space with the norm ‖ · ‖p, and moreover,

its norm topology is stronger than the compact-open topology.

(d) For 0 < p <∞, B(B) ↪→ Np(B), where B(B) is the Bloch space in B.
Here the symbol X ↪→ Y means the continuous embedding of X into Y .

Theorem 1.2. Let ϕ : B → B be a holomorphic mapping, u : B → C a

holomorphic mapping and p, q > 0. The weighted composition operator Wu,ϕ :
Np(B)→ A−q(B)

(1) is bounded if and only if

sup
z∈B

|u(z)|(1− |z|2)q

(1− |ϕ(z)|2)
n+1
2

<∞;

(2) is compact if and only if

lim
r→1−

sup
|ϕ(z)|>r

|u(z)|(1− |z|2)q

(1− |ϕ(z)|2)
n+1
2

= 0.
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The aim of this paper is to obtain necessary and su�cient conditions for
the compactness of di�erences of weighted composition operators acting from
Np(B)-spaces into the spaces A−q(B). It should be noted that the problem of
compact di�erence of composition operators and weighted composition opera-
tors on spaces of holomorphic functions in several variables (either polydisk or
ball) has been treated in several papers, in which the methods of proof, in gen-
eral, follow the standard lines, using the characterization of compact operators
in the corresponding function spaces (see, e.g., [1, 4, 6, 10]). In the present
paper, for Np-spaces, we focus on di�erent technical issues, beginning with giv-
ing an estimate the quantity |f(z) − f(w)|, where f ∈ Np(B) and z, w ∈ B;
and then inspiring by the pseudohyperbolic metric in B, we use the function
ρϕ,φ(z) = |Φϕ(z)(φ(z))| to characterize the compact di�erence between Np(B)
and A−q(B). Although our approach is standard, the results have their own
interest due to the novelty of Np(B)-spaces. Especially, the criterion of com-
pactness of di�erences depends on n, the dimension of the complex space Cn,
while it is independent of p > 0.

2. COMPACT DIFFERENCE

Let ϕ1, ϕ2 be two holomorphic self-mappings on B, u1, u2 : B → C two
holomorphic mappings, and p, q > 0. Let further, Wu1,ϕ1 and Wu2,ϕ2 be two
weighted composition operators acting from Np(B) into A−q(B).

We need some auxiliary results.

Lemma 2.1. The operator Wu1,ϕ1 −Wu2,ϕ2 : Np(B)→ A−q(B) is compact

if and only if |(Wu1,ϕ1−Wu2,ϕ2)(fm)|q → 0 as m→∞ for any bounded sequence

{fm} in Np(B) such that {fm} converges to zero uniformly on every compact

subset of B.
The proof of Lemma 2.1 follows by standard arguments, and hence, we

omit the details.
Now recall that the pseudohyperbolic metric in the ball is de�ned as

ρ(z, w) = |Φw(z)|, z, w ∈ B.
It is a true metric (see, e.g., [3]). Also it is easy to verify, in particular,

that ρ(0, w) = |w|, ρ(Φw(z), w) = |z|.
The following lemmas play an important role in the proof of our main

result. They also have their own interest.

Lemma 2.2. For z, w ∈ B, if ρ(z, w) ≤ 1
2 , then

1

6
≤ 1− |z|2

1− |w|2
≤ 6.
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Proof. Let z, w ∈ B. For simplicity, denote r = ρ(z, w). By ([3], Theo-
rem 1(c)) we have

|ρ(Φw(z), 0)− ρ(0, w)|
1− ρ(Φw(z), 0)ρ(0, w)

≤ ρ(Φw(z), w) ≤ ρ(Φw(z), 0) + ρ(0, w)

1 + ρ(Φw(z), 0)ρ(0, w)
,

or equivalently,
|r − |w||
1− r|w|

≤ |z| ≤ r + |w|
1 + r|w|

.

Actually, for the left inequality, we need only a weaker version. Namely,

(2.1)
|w| − r
1− r|w|

≤ |z| ≤ |w|+ r

1 + r|w|
.

Furthermore, since r ∈ (0, 12 ], from the left inequality of (2.1), it follows
that

1− |z|
1− |w|

≤
1− |w|−r

1−r|w|

1− |w|
=

1 + r

1− r|w|
≤ 3,

while the right inequality of (2.1) gives

1− |z|
1− |w|

≥
1− |w|+r

1+r|w|

1− |w|
=

1− |r|
1 + r|w|

≥ 1

3
.

We also have

1

2
≤ 1

1 + |w|
≤ 1 + |z|

1 + |w|
≤ 2

1 + |w|
≤ 2.

Therefore, we get

1

6
≤ 1− |z|2

1− |w|2
=

1− |z|
1− |w|

· 1 + |z|
1 + |w|

≤ 6. �

Lemma 2.3. For f ∈ Np(B) and z, w ∈ B, we have

|f(z)− f(w)| ≤ c‖f‖p max

{
1

(1− |z|2)
n+1
2

,
1

(1− |w|2)
n+1
2

}
ρ(z, w).

Here c = 6
n+1
2 ·2p+n+1(3+2

√
3)
√
n

3p/2
.

Proof. We consider two cases:

Case 1: ρ(z, w) ≥ 1
4 .

Since |f(z)− f(w)| ≤ |f(z)|+ |f(w)|, by Theorem 1.1(a), we have

min
{

(1− |z|2)
n+1
2 , (1− |w|2)

n+1
2

}
|f(z)− f(w)|

≤ (1− |z|2)
n+1
2 |f(z)|+ (1− |w|2)

n+1
2 |f(w)|



5 Compact di�erence 105

≤ 2|f |n+1
2
≤ 2p+n+1

3p/2
‖f‖p ≤

2p+n+3

3p/2
‖f‖pρ(z, w),

which implies that

|f(z)− f(w)| ≤ 2p+n+3

3p/2
‖f‖p max

{
1

(1− |z|2)
n+1
2

,
1

(1− |w|2)
n+1
2

}
ρ(z, w).

Case 2: ρ(z, w) < 1
4 .

Take and �x w ∈ B. From ρ(Φw(z), w) = |z| it follows that if z ∈ B1/2,

then ρ(Φw(z), w) ≤ 1
2 . In this case, by Theorem 1.1(a) and Lemma 2.2, we

have

|f(Φw(z))| ≤
|f |n+1

2

(1− |Φw(z)|2)
n+1
2

≤ 2p+n‖f‖p
3p/2(1− |Φw(z)|2)

n+1
2

=
2p+n‖f‖p

3p/2(1− |w|2)
n+1
2

·
[

1− |w|2

1− |Φw(z)|2

]n+1
2

≤ 6
n+1
2 · 2p+n‖f‖p

3p/2(1− |w|2)
n+1
2

.

Now we follow the standard scheme to estimate a quantity |f(z)− f(w)|.
Set gw = f ◦ Φw, then

|f(z)− f(w)| = |f(Φw(Φw(z))− f(Φw(0))| = |gw(Φw(z))− gw(0)|.
For each z ∈ B with ρ(z, w) = |Φw(z)| < 1

4 , we have

|f(z)− f(w)| = |gw(Φw(z))− gw(0)| ≤ |∇gw(t)| · |Φw(z)| = |∇gw(t)|ρ(z, w),

where t = (t1, t2, . . . , tn) is some point in B with |t| ≤ |Φw(z)| ≤ 1
4 .

Furthermore,

|∇gw(t)|ρ(z, w) ≤
√
nρ(z, w) max

1≤k≤n

∣∣∣∣∂gw∂zk
(t)

∣∣∣∣
≤
√
nρ(z, w) max

1≤k≤n

∣∣∣∣∣ 1

2πi

∫
|ξk|=

√
3

4

gw(t1, t2, . . . , ξk, . . . , tn)

(ξk − tk)2
dξk

∣∣∣∣∣
≤
√
nρ(z, w)

2π
max
1≤k≤n

∫
|ξk|=

√
3

4

∣∣∣∣gw(t1, t2, . . . , ξk, . . . , tn)

(ξk − tk)2

∣∣∣∣ |dξk|.
Note that for (t1, t2, . . . , ξk, . . . , tn) with |t| ≤ 1

4 and |ξk| =
√
3
4 , we have

ρ (Φw(t1, t2, . . . , ξk, . . . , tn), w) = ρ((t1, t2, . . . , ξk, . . . , tn), 0)

= |(t1, t2, . . . , ξk, . . . , tn)| ≤
√
|t|2 + |ξk|2 ≤

√√√√(1

4

)2

+

(√
3

4

)2

=
1

2
,

and so

|gw(t1, t2, . . . , ξj , . . . , tn)| = |f
(
Φw(t1, t2, . . . , ξk, . . . , tn)

)
| ≤ 6

n+1
2 · 2p+n‖f‖p

3p/2(1− |w|2)
n+1
2

.
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Also,

max
1≤k≤n

∫
|ξk|=

√
3

4

|dξk|
|ξk − tk|2

≤ max
1≤k≤n

∫
|ξk|=

√
3
4

|dξk|
(
√
3
4 − |tk|)2

≤ max
1≤k≤n

∫
|ξk|=

√
3
4

|dξk|
(
√
3
4 −

1
4)2
≤ 2π

√
3

4
·
(

4√
3− 1

)2

= 4π(3 + 2
√

3).

Consequently,

|f(z)− f(w)| ≤
√
nρ(z, w)

2π
· 6

n+1
2 · 2p+n‖f‖p

3p/2(1− |w|2)
n+1
2

· 4π(3 + 2
√

3)

=
6

n+1
2 · 2p+n+1(3 + 2

√
3)
√
n

3p/2
· 1

(1− |w|2)
n+1
2

· ‖f‖p · ρ(z, w).

Combining the results of the two cases yields

|f(z)− f(w)| ≤ c‖f‖p max

{
1

(1− |z|2)
n+1
2

,
1

(1− |w|2)
n+1
2

}
ρ(z, w),

where c = 6
n+1
2 ·2p+n+1(3+2

√
3)
√
n

3p/2
. �

Inspiring by the pseudohyperbolic metric in the unit ball, for two holo-
morphic mappings ϕ,ψ : B→ B, we de�ne

ρϕ,ψ(z) =
∣∣Φϕ(z)(ψ(z))

∣∣ , z ∈ B.
Evidently, ρϕ,ψ = ρψ,ϕ.
For each w ∈ B, set

(2.2) kw(z) =

(
1− |w|2

(1− 〈z, w〉)2

)n+1
2

, z ∈ B.

By ([7], Lemma 3.1), we have kw ∈ Np(B) and sup
w∈B
‖kw‖p ≤ 1. Also note

that kw(w) =

(
1

1− |w|2

)n+1
2

, ∀w ∈ B.

Now we are ready to formulate our main result of this paper.

Theorem 2.4. Let ϕ1, ϕ2 : B→ B be two holomorphic mappings, u1, u2 :
B→ C two holomorphic mappings and p, q > 0. Let further, Wu1,ϕ1 and Wu2,ϕ2

be two weighted composition operators acting from Np(B) into A−q(B). Then

Wu1,ϕ1 −Wu2,ϕ2 is compact if and only if the following conditions are satis�ed:

(i)

lim
r→1−

sup
|ϕk(z)|>r

{
|uk(z)|(1− |z|2)q

(1− |ϕk(z)|2)
n+1
2

ρϕ1,ϕ2(z)

}
= 0 (k = 1, 2);
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(ii)

lim
r→1−

sup
min{|ϕ1(z)|,|ϕ2(z)|}>r

[
|u1(z)−u2(z)|min

{
(1− |z|2)q

(1−|ϕ1(z)|2)
n+1
2

,
(1− |z|2)q

(1−|ϕ2(z)|2)
n+1
2

}]
=0.

Proof. Necessity. Suppose Wu1,ϕ1 −Wu2,ϕ2 is a compact operator.

� Prove (i). It su�ces to prove for k = 1.

Since Wu1,ϕ1 is bounded, by Theorem 1.2 and the fact that ρϕ1,ϕ2(z) ≤
1, ∀z ∈ B , we have

sup
z∈B

{
|u1(z)|(1− |z|2)q

(1− |ϕ1(z)|2)
n+1
2

ρϕ1,ϕ2(z)

}
≤ sup

z∈B

|u1(z)|(1− |z|2)q

(1− |ϕ1(z)|2)
n+1
2

<∞.

Set

G(r) = sup
|ϕ1(z))|>r

{
|u1(z)|(1− |z|2)q

(1− |ϕ1(z)|2)
n+1
2

ρϕ1,ϕ2(z)

}
, r ∈ (0, 1).

It is clear thatG is bounded and decreasing on (0, 1), and hence, lim
r→1−

G(r)

does always exist.

Assume that (i) is not true. Then there exists an L > 0, such that
lim
r→1−

G(r) > L.

By the standard diagonal process, as sketched in ([7], Theorem 3.4), we
can choose a sequence {zm} ⊂ B, such that |ϕ1(zm)| → 1 as m→∞ and

(2.3)
|u1(zm)|(1− |zm|2)q

(1− |ϕ1(zm)|2)
n+1
2

ρϕ1,ϕ2(zm) >
L

4
, (m = 1, 2, . . .).

Consider the functions

gm(z) = Φϕ2(zm)(z) · kwm(z), z ∈ B,

where wm = ϕ1(zm) and kwm is de�ned by (2.2), m = 1, 2, . . .. Obviously, gm ∈
O(B). Moreover, since |Φϕ2(zm)(z)| ≤ 1,∀z ∈ B, we have ‖gm‖p ≤ ‖kwm‖p ≤ 1,
which shows that gm(z) ∈ Np(B) for all m ∈ N, and that the sequence {gm} is
bounded in Np(B). Furthermore, by the fact that {kwm}m∈N converges to zero
uniformly on every compact subset of B, and |gm(z)| ≤ |kwm(z)|,∀z ∈ B, we
have {gm}m∈N also converges to zero uniformly on every compact subset of B.

By Lemma 2.1,

(2.4) |(Wu1,ϕ1 −Wu2,ϕ2)(gm)|q → 0, as m→∞.

Note that for eachm ∈ N, Φϕ2(zm)(ϕ2(zm)) = 0, which implies gm(ϕ2(zm))
= 0. Then,
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|(Wu1,ϕ1 −Wu2,ϕ2)(gm)|q
= sup

z∈B

{
|u1(z)gm(ϕ1(z))− u2(z)gm(ϕ2(z))| · (1− |z|2)q

}
≥ |u1(zm)gm(ϕ1(zm))− u2(zm)gm(ϕ2(zm))| · (1− |zm|2)q

= |u1(zm)gm(ϕ1(zm))|·(1−|zm|2)q =
|u1(zm)|(1−|zm|2)q

(1− |ϕ1(zm)|2)
n+1
2

·|Φϕ2(zm)(ϕ1(zm))|

=
|u1(zm)|(1− |zm|2)q

(1− |ϕ1(zm)|2)
n+1
2

ρϕ1,ϕ2(zm) >
L

4
,

by (2.3), which contradicts (2.4).

Thus, we must have

lim
r→1−

sup
|ϕ1(z)|>r

{
|u1(z)|(1− |z|2)q

(1− |ϕ1(z)|2)
n+1
2

ρϕ1,ϕ2(z)

}
= 0,

and (i) is proved.

� Prove (ii). Since bothWu1,ϕ1 andWu2,ϕ2 are bounded, by Theorem 1.2,
we have

sup
z∈B

[
|u1(z)− u2(z)|min

{
(1− |z|2)q

(1− |ϕ1(z)|2)
n+1
2

,
(1− |z|2)q

(1− |ϕ2(z)|2)
n+1
2

}]

≤ sup
z∈B

[
|u1(z)|min

{
(1− |z|2)q

(1− |ϕ1(z)|2)
n+1
2

,
(1− |z|2)q

(1− |ϕ2(z)|2)
n+1
2

}]

+ sup
z∈B

[
|u2(z)|min

{
(1− |z|2)q

(1− |ϕ1(z)|2)
n+1
2

,
(1− |z|2)q

(1− |ϕ2(z)|2)
n+1
2

}]

≤ sup
z∈B

|u1(z)|(1− |z|2)q

(1− |ϕ1(z)|2)
n+1
2

+ sup
z∈B

|u2(z)|(1− |z|2)q

(1− |ϕ2(z)|2)
n+1
2

<∞.

For each r ∈ (0, 1), set

H(r) =

supmin{|ϕ1(z)|,|ϕ2(z)|}>r

[
|u1(z)− u2(z)|min

{
(1−|z|2)q

(1−|ϕ1(z)|2)
n+1
2
, (1−|z|2)q

(1−|ϕ2(z)|2)
n+1
2

}]
.

This function H(r) is clearly bounded and decreasing on (0, 1), and hence,
lim
r→1−

H(r) exists. We prove that this limit must be zero.

We follow the same scheme of proving (i), but it requires more delicate
arguments. Assume that lim

r→1−
H(r) = L > 0. Again by the standard diagonal

process, we can choose a sequence {zm} ⊂ B, such that min{|ϕ1(zm)|, |ϕ2(zm)|}
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→ 1 as m→∞ and that for each m ∈ N,

|u1(zm)− u2(zm)|min

{
(1− |zm|2)q

(1− |ϕ1(zm)|2)
n+1
2

,
(1− |zm|2)q

(1− |ϕ2(zm)|2)
n+1
2

}
>
L

4
.

For each m ∈ N, we have either |ϕ1(zm)| ≥ |ϕ2(zm)| or |ϕ1(zm)| ≤
|ϕ2(zm)|. Choose a subsequence {zmk

} of {zm}, such that for each k ∈ N,
|ϕ1(zmk

)| ≥ |ϕ2(zmk
)|. Otherwise, there are only �nitely many indexes m, such

that |ϕ1(zm)| ≥ |ϕ2(zm)| and in this case, we choose a subsequence {zmk
} of

{zm}, such that for each k ∈ N, |ϕ1(zmk
)| ≤ |ϕ2(zmk

)|. We only consider
the �rst case, omitting the second case (which can be proved by interchang-
ing the role of ϕ1 and ϕ2), and without loss of generality, for the purpose of
convenience, we write {zmk

} as {zm}.
Since |ϕ1(zm)| ≥ |ϕ2(zm)| for each m ∈ N, we have

|u1(zm)− u2(zm)|min

{
(1− |zm|2)q

(1− |ϕ1(zm)|2)
n+1
2

,
(1− |zm|2)q

(1− |ϕ2(zm)|2)
n+1
2

}

= |u1(zm)− u2(zm)| (1− |zm|2)q

(1− |ϕ2(zm)|2)
n+1
2

>
L

4
.

Since the sequence {ρϕ1,ϕ2(zm)} is bounded, it contains a convergent sub-
sequence. Without loss of generality, we can assume that

lim
m→∞

ρϕ1,ϕ2(zm) = ` ≥ 0.

There are two cases for `:

� Case 1: ` > 0. In this case, there exists an m0 ∈ N such that

ρϕ1,ϕ2(zm) >
`

2
, ∀m > m0. In this case, we have

(1− |zm|2)q|u1(zm)− u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

≤ (1− |zm|2)q|u1(zm)|
(1− |ϕ2(zm)|2)

n+1
2

+
(1− |zm|2)q|u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

≤ 2

`
ρϕ1,ϕ2(zm)

[
(1− |zm|2)q|u1(zm)|
(1− |ϕ2(zm)|2)

n+1
2

+
(1− |zm|2)q|u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

]

≤ 2

`
ρϕ1,ϕ2(zm)

[
(1− |zm|2)q|u1(zm)|
(1− |ϕ1(zm)|2)

n+1
2

+
(1− |zm|2)q|u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

]
,
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which gives

ρϕ1,ϕ2(zm)

[
(1− |zm|2)q|u1(zm)|
(1− |ϕ1(zm)|2)

n+1
2

+
(1− |zm|2)q|u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

]
≥ L`

8
, ∀m > m0.

However, since |ϕ2(zm)| ≤ |ϕ1(zm)| ≤ 1, ∀m ∈ N, from

lim
m→∞

min{|ϕ1(zm)|, |ϕ2(zm)|} = 1

it follows that
lim
m→∞

|ϕ1(zm)| = lim
m→∞

|ϕ2(zm)| = 1.

Hence, by (i),

lim
m→∞

ρϕ1,ϕ2(zm)
(1− |zm|2)q|uk(zm)|
(1− |ϕk(zm)|2)

n+1
2

= 0, k = 1, 2,

and hence,

ρϕ1,ϕ2(zm)

(
(1− |zm|2)q|u1(zm)|
(1− |ϕ1(zm)|2)

n+1
2

+
(1− |zm|2)q|u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

)
→ 0, as m→∞,

which is impossible.

� Case 2: ` = 0. We claim, for the probe functions kwm , where wm =
ϕ1(zm), that

(2.5)
∣∣∣1− (1− |ϕ1(zm)|2)

n+1
2 kwm(ϕ2(zm))

∣∣∣→ 0, as m→∞.

Indeed, by Lemma 2.3, we have∣∣∣1− (1− |ϕ1(zm)|2)
n+1
2 kwm(ϕ2(zm))

∣∣∣
= (1− |ϕ1(zm)|2)

n+1
2 · |kwm(ϕ1(zm))− kwm(ϕ2(zm))|

≤ (1− |ϕ1(zm)|2)
n+1
2 · c‖kwm‖p · ρϕ1,ϕ2(zm) ·

max

{
1

(1− |ϕ1(zm)|2)
n+1
2

,
1

(1− |ϕ2(zm)|2)
n+1
2

}

≤ (1− |ϕ1(zm)|2)
n+1
2 cρϕ1,ϕ2(zm)

(1− |ϕ1(zm)|2)
n+1
2

= cρϕ1,ϕ2(zm).

The last expression converges to ` = 0 as m→∞, and (2.5) follows. Here
c is the constant de�ned in Lemma 2.3.

Furthermore, since lim
m→∞

ρϕ1,ϕ2(zm) = 0, there exists m1 ∈ N, such that

ρϕ1,ϕ2(zm) < 1
2 , ∀m ≥ m1. Then by Lemma 2.2,

1− |ϕ2(zm)|2

1− |ϕ1(zm)|2
≤ 6. Also

since Wu2,ϕ2 is bounded from Np(B) into A−q(B), by Theorem 1.2, there
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exists some positive number K > 0, such that sup
z∈B

(1− |z|2)q|u2(z)|
(1− |ϕ2(z)|2)

n+1
2

< K.

Again by lim
m→∞

ρϕ1,ϕ2(zm) = 0, there exists m2 ∈ N, such that ρϕ1,ϕ2(zm) <

L

8·6
n+1
2 cK

, ∀m > m2.

Consequently, for m > max{m1,m2},

|(Wu1,ϕ1 −Wu2,ϕ2)(kwm)|q
= sup

z∈B
(1− |z|2)q |u1(z)kwm(ϕ1(z))− u2(z)kwm(ϕ2(z))|

≥ (1− |zm|2)q |u1(zm)kwm(ϕ1(zm))− u2(zm)kwm(ϕ2(zm))|

= (1− |zm|2)q
∣∣∣∣∣ u1(zm)

(1− |ϕ1(zm)|2)
n+1
2

− u2(zm)kwm(ϕ2(zm))

∣∣∣∣∣
≥ (1− |zm|2)q

∣∣∣∣∣ u1(zm)

(1− |ϕ1(zm)|2)
n+1
2

− u2(zm)

(1− |ϕ1(zm)|2)
n+1
2

∣∣∣∣∣
−(1− |zm|2)q

∣∣∣∣∣ u2(zm)

(1− |ϕ1(zm)|2)
n+1
2

− u2(zm)kwm(ϕ2(zm))

∣∣∣∣∣
= (1− |zm|2)q

|u1(zm)− u2(zm)|
(1− |ϕ1(zm)|2)

n+1
2

−(1− |zm|2)q
|u2(zm)|

(1− |ϕ1(zm)|2)
n+1
2

∣∣∣1− (1− |ϕ1(zm)|2)
n+1
2 kwm(ϕ2(zm))

∣∣∣ .
Moreover, we also have

(1− |zm|2)q
|u1(zm)− u2(zm)|
(1− |ϕ1(zm)|2)

n+1
2

≥ (1− |zm|2)q|u1(zm)− u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

>
L

4
,

and

(1− |zm|2)q
|u2(zm)|

(1− |ϕ1(zm)|2)
n+1
2

= (1− |zm|2)q
|u2(zm)|

(1− |ϕ2(zm)|2)
n+1
2

·

(1− |ϕ2(zm)|2)
n+1
2

(1− |ϕ1(zm)|2)
n+1
2

≤ K · 6
n+1
2 .

Therefore, we arrive at

(2.6) |(Wu1,ϕ1 −Wu2,ϕ2)(kwm)|q ≥
L

4
− 6

n+1
2 Kcρϕ1,ϕ2(zm) ≥ L

4
− L

8
=
L

8
.

However, since Wu1,ϕ1 −Wu2,ϕ2 is compact, and {kwm} converges to zero
uniformly on every compact subset of B, we must have

(2.7) lim
m→∞

|(Wu1,ϕ1 −Wu2,ϕ2)(kwm)|q = 0,
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which contradicts (2.6).

Su�ciency. Let conditions (i)�(ii) hold. Take an arbitrary bounded
sequence {fm} in Np(B) that converges to zero uniformly on every compact
subset of B. By Lemma 2.1, we show that

|(Wu1,ϕ1 −Wu2,ϕ2)(fm)|q → 0, as m→∞.

Again we use a method of contradiction. Assume that there is an ε0 > 0
and a subsequence {fmk

} of {fm} such that

(2.8) |(Wu1,ϕ1 −Wu2,ϕ2)(fmk
)|q ≥ ε0, ∀k ∈ N.

We may assume, for the sake of simplicity, that {fmk
} is {fm} itself. That

is, ∀m ∈ N,

|(Wu1,ϕ1 −Wu2,ϕ2)(fm)|q
= sup

z∈B
(1− |z|2)q |u1(z)fm(ϕ1(z))− u2(z)fm(ϕ2(z))| ≥ ε0.

From this it follows that there exists a sequence {zm} ⊂ B, such that
∀m ∈ N,

(2.9) Hm = (1− |zm|2)q |u1(zm)fm(ϕ1(zm))− u2(zm)fm(ϕ2(zm))| ≥ ε0
2
.

Here zm's are not necessarily distinct.
We may also, without loss of generality, assume that both sequences

{ϕ1(zm)} and {ϕ2(zm)} converge (as otherwise, we can consider their con-
vergent subsequences instead).

Note that since both Wu1,ϕ1 and Wu2,ϕ2 are bounded, by Theorem 1.2,
there exists K > 0, such that

(2.10) sup
z∈B
|uk(z)|(1− |z|2)q ≤ sup

z∈B

|uk(z)|(1− |z|2)q

(1− |ϕk(z)|2)
n+1
2

≤ K, k = 1, 2.

Now we consider the sequence max{|ϕ1(zm)|, |ϕ2(zm)|}. It is clear that
there exists

lim
m→∞

max{|ϕ1(zm)|, |ϕ2(zm)|} = q ≤ 1.

• Claim 1: q = 1.

Proof. Assume

(2.11) max{|ϕ1(zm)|, |ϕ2(zm)|} → q < 1, as m→∞.

Then, by (2.9),

ε0
2
≤ Hm ≤ (1− |zm|2)q

(
|u1(zm)fm(ϕ1(zm))|+ |u2(zm)fm(ϕ2(zm)|

)
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≤ K
(
|fm(ϕ1(zm))|+ |fm(ϕ2(zm))|

)
, ∀m ∈ N.

Furthermore, by (2.11), there exists m3 ∈ N such that

max{|ϕ1(zm)|, |ϕ2(zm)|} ≤ 1 + q

2
, ∀m > m3.

In particular, for all m > m3, ϕk(zm) ∈
{
z : |z| ≤ 1+q

2

}
, k = 1, 2. Since{

z : |z| ≤ 1+q
2

}
is a compact set of B, the sequence {fm(z)} converges uniformly

to zero on this set, and hence, both sequences {fm(ϕk(zm))} , k = 1, 2, converge
to zero, as m→∞, which shows that

Hm ≤ K (|fm(ϕ1(zm))|+ |fm(ϕ2(zm))|)→ 0, as m→∞.

But this contradicts the fact that Hm ≥
ε0
2
, ∀m ∈ N. �

Thus, we have

(2.12) max{|ϕ1(zm)|, |ϕ2(zm)|} → 1, as m→∞.

Then at least one of the limits lim
m→∞

|ϕk(zm)| (k = 1, 2) must be 1. So we

may assume that

(2.13)

{
lim
m→∞

ϕ1(zm) = P, with |P | = 1,

lim
m→∞

ϕ2(zm) = Q, with |Q| ≤ 1.

Furthermore, we may also assume that there exists the limit

lim
m→∞

ρϕ1,ϕ2(zm) = ` ≥ 0

(otherwise we consider its convergent subsequence).

• Claim 2: ` = 0.

Proof. Assume in contrary that ` > 0. Consider two cases of |Q| ≤ 1.

� Case 1: |Q| = 1. In this case, from (i) and (2.13), it follows that

(2.14) lim
m→∞

|uk(zm)|(1− |zm|2)q

(1− |ϕk(zm)|2)
n+1
2

= 0 (k = 1, 2).

Then, by Theorem 1.1 and (2.9), we have

Hm ≤ (1− |zm|2)q|u1(zm)|
(1− |ϕ1(zm)|2)

n+1
2

(1− |ϕ1(zm)|2)
n+1
2 |fm(ϕ1(zm))|

+
(1− |zm|2)q|u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

(1− |ϕ2(zm)|2)
n+1
2 |fm(ϕ2(zm))|
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≤

[
(1− |zm|2)q|u1(zm)|
(1− |ϕ1(zm)|2)

n+1
2

+
(1− |zm|2)q|u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

]
|fm|n+1

2

≤ 2p+n

3p/2

[
(1− |zm|2)q|u1(zm)|
(1− |ϕ1(zm)|2)

n+1
2

+
(1− |zm|2)q|u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

]
‖fm‖p.

In the last inequality, letting m → ∞, by (2.14) as well as boundedness
of {fm} in Np(B), we get

lim
m→∞

Hm = 0,
which is impossible, because it contradicts (2.9).

� Case 2: |Q| < 1. In this case, the second limit in (2.13) gives ϕ2(zm) ∈{
z : |z| ≤ 1+|Q|

2

}
, for all m large enough, say m > m4. Then by (2.10) and

Theorem 1.1, for all m > m4, we have

Hm ≤ (1− |zm|2)q|u1(zm)||fm(ϕ1(zm))|
+(1− |zm|2)q|u2(zm)||fm(ϕ2(zm))|

=
(1− |zm|2)q|u1(zm)|
(1− |ϕ1(zm)|2)

n+1
2

(1− |ϕ1(zm)|2)
n+1
2 |fm(ϕ1(zm))|

+(1− |zm|2)q|u2(zm)||fm(ϕ2(zm))|

≤ (1− |zm|2)q|u1(zm)|
(1− |ϕ1(zm)|2)

n+1
2

|fm|n+1
2

+K|fm(ϕ2(zm))|

≤ 2p+n

3p/2
· (1− |zm|2)q|u1(zm)|

(1− |ϕ1(zm)|2)
n+1
2

‖fm‖p +K|fm(ϕ2(zm))|.

Letting m → ∞, from (2.14) and the fact that fm(ϕ2(zm)) converges to

zero uniformly on the compact set
{
z : |z| ≤ 1+|Q|

2

}
, it follows that right-hand

side of the last inequality tends to 0 asm→∞, which again contradicts (2.9). �
Thus, we have

(2.15) lim
m→∞

ρϕ1,ϕ2(zm) = 0.

• Claim 3: |Q| = 1, that is lim
m→∞

|ϕ2(zm)| = 1.

Proof. Indeed, for each m ∈ N, we have
1− ρ2ϕ1,ϕ2

(zm) = 1− |Φϕ2(zm)(ϕ1(zm)|2

= 1− (1− |ϕ1(zm)|2)(1− |ϕ2(zm)|2)
|1− 〈ϕ1(zm), ϕ2(zm)〉|2

.

Since lim
m→∞

|ϕ1(zm)| = 1, if lim
m→∞

|ϕ2(zm)| = |Q| < 1, then we would have

for all m large enough

|1− 〈ϕ1(zm), ϕ2(zm)〉| ≥ 1− |〈ϕ1(zm), ϕ2(zm)〉|
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≥ 1− |ϕ1(zm)||ϕ2(zm)| ≥ 1− |Q| > 0.

But this implies that lim
m→∞

ρϕ1,ϕ2(zm) = 1, which contradicts (2.15). �

Now by the same reason as in the necessity part, we may assume that

(2.16) |ϕ1(zm)| ≥ |ϕ2(zm)|, ∀m ∈ N.

Then from (2.9)�(2.10) and Lemma 2.3, it follows that for each m ∈ N

Hm = (1− |zm|2)q |u1(zm)fm(ϕ1(zm))− u2(zm)fm(ϕ2(zm))|
≤ (1− |zm|2)q |u1(zm)fm(ϕ1(zm))− u1(zm)fm(ϕ2(zm))|

+(1− |zm|2)q |u1(zm)fm(ϕ2(zm))− u2(zm)fm(ϕ2(zm))|

=
(1− |zm|2)q|u1(zm)|
(1− |ϕ1(zm)|2)

n+1
2

· (1− |ϕ1(zm)|2)
n+1
2 |fm(ϕ1(zm))− fm(ϕ2(zm))|

+
(1− |zm|2)q|fm(ϕ2(zm))|

(1− |ϕ2(zm)|2)
n+1
2

· (1− |ϕ2(zm)|2)
n+1
2 |u1(zm)− u2(zm)|

≤ cK ·‖fm‖p max

{
(1− |ϕ1(zm)|2)

n+1
2

(1− |ϕ1(zm)|2)
n+1
2

,
(1− |ϕ1(zm)|2)

n+1
2

(1− |ϕ2(zm)|2)
n+1
2

}
ρϕ1,ϕ2(zm)

+
2p+n

3p/2
‖fm‖p ·

(1− |zm|2)q|u1(zm)− u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

.

However, by (2.16)

max

{
(1− |ϕ1(zm)|2)

n+1
2

(1− |ϕ1(zm)|2)
n+1
2

,
(1− |ϕ1(zm)|2)

n+1
2

(1− |ϕ2(zm)|2)
n+1
2

}

= max

{
1,

(1− |ϕ1(zm)|2)
n+1
2

(1− |ϕ2(zm)|2)
n+1
2

}
= 1,

and hence,

Hm ≤ cK‖fm‖p · ρϕ1,ϕ2(zm)

+
2p+n

3p/2
‖fm‖p ·

(1− |zm|2)q|u1(zm)− u2(zm)|
(1− |ϕ2(zm)|2)

n+1
2

= cK‖fm‖p · ρϕ1,ϕ2(zm)

+‖fm‖p ·
2p+n

3p/2
|u1(zm)− u2(zm)| ·

min

{
(1− |zm|2)q

(1− |ϕ2(zm)|2)
n+1
2

,
(1− |zm|2)q

(1− |ϕ1(zm)|2)
n+1
2

}
.
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In the inequality above, since {‖fm‖p} is bounded, by (2.15),

lim
m→∞

‖fm‖p · ρϕ1,ϕ2(zm) = 0.

Furthermore, by (ii) and lim
m→∞

|ϕ1(zm)| = lim
m→∞

|ϕ2(zm)| = 1, we get

lim
m→∞

‖fm‖p|u1(zm)−u2(zm)|·min

{
(1− |zm|2)q

(1− |ϕ2(zm)|2)
n+1
2

,
(1− |zm|2)q

(1− |ϕ1(zm)|2)
n+1
2

}
=0.

These equalities imply that lim
m→∞

Hm = 0, but this contradicts (2.9).

The theorem is proved completely. �
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