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Conditioning. Conditioned distribution and expectation.

1. The conditioned probability and expectation. 

Let ((, K, P) be a probability space. Let A ( K be an event such that P(A) ( 0.  Let B be another event from K. Define 

(1.1)
P(B (A) = 
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This is called the conditioned probability of B given A. 

Of course that P(B(A) = P(B) ( P(BA) = P(B)P(A) ( A and B are independent.

If A is given, we may consider the function PA : K ( [0,1] given by 

(1.2) PA(B) = P(B(A)

It is obvious that PA is a new probability on the (-algebra K, called the conditioned probability given A. 

The integral of a random variable X with respect to it will be denoted by E(X(A) or EA(X). The computing formula is

PROPOSITION 1.1. E(X(A) = 
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Proof. Obvious for X = 1B . Then apply the usual method of four steps: X simple, X nonnegative, X any. (
Let now Y  be a discrete random variable and I be the set {y ( ( ( P(Y = y) ( 0}. Then I is at most countable and  Y  admits the cannonic representation 
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 (a.s.) . In many statistical problems one gets interested in computing the probability of an event B if one has an information about Y. In other words one wants to know P(B ( Y = y). It is natural to define P(B (Y) as 

(1.3) P(B (Y) = 
[image: image4.wmf]å
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This quantity will be called the conditioned probability of B given the random variable Y.

EXAMPLE..  An urn I has n labelled balls (that is I ={1,2,..,n}. One draws two balls without replacing. The first one is Y and the second one is X . One wants to compute P(X=x (Y) and to compare it with P(X = x ) . Accepting that we are in the classical context , ( = I 2 \ {(i,i)(i ( I} , thus (((= n(n-1) . Then P(X = x ( Y = y ) = 
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 (as Y has only n -1 possibilities). It means that

 P(X=x (Y) = 
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1{Y = y}  = 
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1{Y ( x } . Compare this with P(X=x) = 
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Looking at (1.3) one remarks four things :(i). the conditioned probability is a random variable ; (ii). the random variable does not depend as much on Y as on the sets {Y=y} which form a partition of ( ;(iii). This random variable is measurable with respect to the (-algebra ((Y) := Y-1(B(()) and, finally, (iv). The random variable may be not defined everywhere, but only almost surely : if P(Y=y) = 0, then P(B (Y=y) may be any number form 0 to 1. A convention, as good as any other, would be that in this case to decree that P(B (Y=y)=0.

It means that a more “natural” definition would be the conditioned probability  of B given a partition ( = ((j) j ( I where I is at most countable . Then the analog of (1.3) would be 

(1.4) P(B ( ( ) = 
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Taking into account Proposition 1. one is suggested to define

(1.5) E(X ( () =  
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(the condition that X ( L1 means that E( X ( <  ( ; it is not necessary, but makes things easier)

The definition (1.5) has the advantage that E(1B ( () = P(B ( ( ) , as it is normal to be . 

We want to generalize the definition (1.5) in other situations. The most general situation is when we replace “partition” by “(-algebra” . If in (1.5) we denote by F  the (-algebra given by by ( (remark that A ( F ( A = 
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for some J ( I ) , we can say that the right hand of (5) is a definition for E(X(F) , instead of E(X ( (). So

(1.6)
E(X (F ) =  
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What properties characterize the dfinition (1.6) which can be generalized to an arbitray sub-(-algebra of  K?

Remark that if we denote by Y the right hand of (1.6), then

(i).
Y is F –measurable ; moreover, Y ( L1((, F, P)

(ii).
If A ( F  then E(X1A) = E(Y1A)

Indeed, ((Y((1 = E(Y( ( 
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= E(X( < (. As about the claim (ii) , let A ( F ( A = 
[image: image18.wmf]U

J

j

j

Î

D

for some J ( I. Then E(Y1A) = 
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(by Lebesgue’s dominated convergence) = 
[image: image20.wmf])

1

)

(

(

å

Î

D

D

J

j

j

j

X

E

E

(since (j are disjoint) = 
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 (by Proposition 1) = E(X1A). 


The conditions (i) and (ii) are used to define E(X (F ) in general situations.

Definition.1.  Let  X ( L1((,K,P) and F( K be a sub (-algebra. We say that Y = E(X (F) (read : Y is the conditioned expectation of X given   F ) iff

(1.7) Y is F –measurable and A ( F ( E(X1A) = E(Y1A)

Definition.2. Let B ( K . By P(B (K) we shall understand E(1B (F ). Read: “the conditioned probability of B given F ”.

Definition. 3. Let X be a random variable and F( K be a sub (-algebra. By PoX-1(B(F ) we shall understand the random variable P(X-1(B)( F). Read: “the conditioned distribution of X given F ”. 

One may remark that the key concept is that of conditioned expectation.

2.  Properties of the conditioned expectation. 

Property 1. Almost sure unicity. If X is an integrable r.v., then E(X(F) exists and is unique a.s. , i.e. if Y1 and Y2 are two versions of E(X(F), then Y1 = Y2 (a.s.)

Proof. The signed measure X(P : F ( (  is absolutely continuous with respect to P , since P(A)=0 ( (X(P)(A) = 
[image: image23.wmf]ò

X1AdP = 0 (as X1A = 0 a.s.). The Radon Nikodym theorem says that there must be a density of X(P with respect to P : there must exist Y which is F –measurable such that X(P = Y(P . Notice that we think both measures living on the (-algebra F. The unicity is guaranteed by the same Radon Nikodym theorem; but one may check it directly, as an exercise. If Y1(P = Y2(P , the meaning is that 
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(Y1-Y2)1A dP = 0 ( A ( F ; one may as well choose A ={Y1>Y2}=
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and get that P(Y1>Y2) = 0. In the same way one gets that P(Y1<Y2) = 0, that is P(Y1(Y2)=0  ( Y1 = Y2 (a.s.). (
Property 2. Generalizing the usual expectation. Suppose that is F  is trivial, meaning that A ( F ( P(A) ({0,1}. Then E(X(F) = EX. Moreover, if X is already F –measurable, then E(X(F) = EX. It means that the F- measurable functions behave as the constants do, in the usual case.

Proof. Let Y = E(X(F) . As Y is  F- measurable, Y must be a constant a.s.

Indeed, the sets Lb={Y < b} ( F.  They are an increasing family, in the sense that b < c ( Lb(Lc.Their probability can be either 0, or 1. As 0 = P((bLb) = limb(-(P(Lb) it means that some of these sets will heve probability 0. Let c = sup {b ( ( ( P(Lb) = 0}. Then, due to the definition of c, P(Lc+( ) = 1 ( ( > 0. In the same way P(Lc) = 0. By the monotonous continuity of any measure it follows  that P(Y ( c) = 1 but P(Y<c) = 0 ( P (Y = c) = 1  ( Y = c (a.s.). So Y is a constant a.s. If in (1.7) we take A = ( , we get that EX  = E(X1A)  = E(Y1A) = EY = Ec = c.

As about the second claim, it is obvious from 1.7. (
Property 3. Projectivity. If F ( G are two (-algebras then E(E(X(G)(F )=E(X(F ). As a consequence of property 2, we get that EX = E(E(X(G)).

Proof. Let Y = E(X(G ) and Z = E(X(F ). We want to check that E(Y( F) = Z . Firstly, Z is F – measurable. Secondly, let A ( F. Then E(Z1A) = E(X1A) (by 1.7) = E(Y1A) (again by 1.7; notice that A ( F ( A ( G !  ) It means that E(Y( F) = Z.(
Property 4. Linearity.  If a,b ( ( and X1,X2 ( L1 then E(aX1+bX2(F ) = aE(X1(F )+bE(X2(F ) (a.s.)

Proof. Let Yj = E(Xj(F ), j = 1,2. Let Y = aY1+bY2 and A ( F . Then Y is F – measurable and, moreover, E(Y1A) = E((aY1+bY2 )1A) =a E(Y1 1A) +b E(Y2 1A) = a E(X1 1A) +b E(X2 1A) (by 1.7) = E((aX1+bX2 )1A) , checking the second condition from 1.7.(
Property 5. Monotonicity.  If X1 ( X2 then E(X1(F ) ( bE(X2(F ) (a.s.)

Proof. Using Property 4, it is enough to check that X ( 0 ( E(X(F ) ( 0 (a.s.). Let Y = E(X(F ) . Y is F – measurable and  A ( F  ( E(Y1A) = E(X1A) ( 0 – since X ( 0. If one puts A = {Y<0} it follows that E(Y1A) = -E(Y-) ( 0 ( E(Y-) ( 0 ( E(Y-) = 0 (a.s.) ( Y = Y+ (a.s.) ( Y ( 0 (a.s.)(.

Property 6. Jensen’s inequality.  Let X : ( ( I ( ( be a random variable and f : I ( ( be convex (here I is an interval!). Then E(f(X)(F ) ( f(E(X(F )).

Proof. A convex function f can be written as f = sup {ha(a ( (}, ( at most countable and ha affine functions, ha(x) = max+na. (for instance ( = Q(I and if a ( (, ha is a tangent for f at (a, f(a)) ; it is known that a convex function has at least one tangent at every point) 

Then E(f(X)(F ) = E(sup {ha(X)(a ( (}(F ) ( sup {E(ha(X)(F)(a ( (} (by Property 6, monotonicity) = sup {E(maX+na)(F)(a ( (}= sup {maE( X(F ) + na(a ( (} (by linearity and Property 2 – the expectation of a constant is the constant itself) = f(E(X(F)).(
Property 7. Contractivity.  Let p([1,(] and X ( Lp . Then ║E(X(F )║p ( ║X║p. As a consequence the conditioned expectation is a linear contraction from Lp((,K,P) to Lp((,F,P)

Proof. There are two cases.

1. 1(p < (. The claim is E(E(X(F )(p ( E(X(p . Let f(x) = (x(p. Then f : ( ( ( is convex so we know that  E(f(X)(F ) ( f(E(X(F )) (  E((X(p(F ) ( (E(X(F )(p . If we take the expectation, we get E(E((X(p(F )) ( E((E(X(F )(p)  which, because of Property 3 is exactly our claim.

2. p = (. Let then M = ║X║( . It means that (X(( M (a.s.) ( E((X(( F ) ( E(M(F ) (by property 5, monotonicity) ( E((X(( F ) ( M (a.s.) (   ║E((X(( F )║( ( M .(
Property 8. Conditioned Beppo-Levi, Fatou and Lebesgue theorems. Precisely, the claim runs as follows:

1. If Xn ( g ( L1 and Xn (X (or Xn(X, Xn ( g ( L1) then E(Xn(F ) ( E(X(F ) (a.s.) (or  E(Xn(F ) ( E(X(F ) (a.s.)).  (Beppo – Levi);

2. If Xn ( g ( L1 (resp. Xn ( g ( L1) then E(liminfn(( Xn(F ) ( liminfn(( E(Xn (F )(resp. E(limsupn(( Xn(F ) ( limsupn(( E(Xn (F )  (Fatou) ;

3. If Xn ( X (a.s.) and (Xn( ( g ( L1 , then a.s.-lim E(Xn(F ) = E(X(F ) (Dominated convergence, Lebesgue)

Proof. Let Yn = E(Xn(F ). Due to monotonicity, Yn is almost surely increasing. Let Y be its supremum , which is a.s. the same with its limit. The claim is that Y = E(X(F ). According to (1.7) what we have to do is to check the measurability (obvious) and the fact that A ( F (E(X1A) = E(Y1A). But E(X1A) = E((limXn1A) = (limE(Xn1A) (usual Beppo-Levi) = (limE(Yn1A) (by (1.7)) = E((limYn1A) (again Beppo Levi) = E(Y1A) . That checks property 1.

 As about 2., the proof is the same as in the usual case, (monotonicity and conditioned Beppo-Levi) : E(liminfn(( Xn(F ) = E(supn infk Xn+k(F ) = E(supn Yn(F ) (with Yn = infk Xn+k, an increasing sequence) = E((limYn(F) = (limE(Yn(F ) (conditioned Beppo-Levi) = supnE(infk Xn+k(F ) ( supn infk E(Xn+k(F ) (monotonicity) = liminfn(( E(Xn (F ). 

The conditioned Lebesgue theorem puts no problems: so X = liminfn(( Xn = limsupn((Xn . we apply conditioned Fatou’s lemma :

limsupn(( E(Xn(F ) ( E(limsupn((Xn(F)= E(X(F ) = E(liminfn((Xn(F )( liminfn(( E(Xn (F ) meaning that limsupn(( E(Xn(F ) = liminfn(( E(Xn (F ) = E(X(F ).(
Property 9. The F-measurable functions behave as constants.
Precisely, the property runs as follows: if X (Lp and Y (Lq , with 
[image: image26.wmf]1

1

1

=

+

q

p

, p,q ( 1, then E(XY(F ) = YE(X(F ). Remark that if F  is trivial then Y is a constant.

Proof. The condition X (Lp and Y (Lq  is put for convenience, what we want is that XY ( L1. 

The proof will be standard. Let Z = YE(X(F ). Our claim means that Z is F – measurable (obvious) and that A (F  ( E(XY1A) = E(Z1A) . 

Step 1. Y = 1B, B (F . Then E(Z1A) = E(YE(X(F )1A) = E(E(X(F )1A1B) = E(E(X(F )1A(B) = E(X1A(B) (as A,B ( F  ( A(B ( F , too!) = E(X1A1B) = E(XY1A) so in this case we are done.

Step 2. Y is simple, i.e. Y = 
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, Bi (F . Then  E(Z1A) = E(YE(X(F )1A) =
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E(X(F )) = 
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(F ) (by step 1!) = 
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(F ) (by linearity) = E(XY1A)  finishing the proof in this case, too. 

Step 3. Y is nonnegative. Then Y is the limit of a nondecreasing sequence of simple functions, Yn. We have: E(Z1A) = E(YE(X(F )1A) = E(YE(X+(F )1A) - E(YE(X-(F )1A) = E((limnYnE(X+(F )1A) - E((limnYnE(X-(F )1A) = (limn E(YnE(X+(F )1A) - (limn E(YnE(X-(F )1A)    (Beppo-Levi!)  =(limn E(E(X+Yn1A(F ) - (limn E(E(X-Yn1A(F )  (Step 2! Yn1A is simple!) =(limn E(X+Yn1A) - (limn E(X-Yn1A ) (Property 3!)  = E(X+(limn Yn1A) - E(X-(limn Yn1A )  (Beppo Levi again!) = E(X+Y1A) - E(X-Y1A )  = E((X+-X-)Y1A) = E(XY1A) . 

Step 4. Y is any. Then Y = Y+ -Y- hence  E(Z1A) = E(YE(X(F )1A)

 = E(Y+ E(X(F )1A) - E(Y- E(X(F )1A) = E(E(X Y+1A (F )) - E(E(X Y-1A (F )) (by step 3 ! Y+1A and Y-1A are nonnegative) = E(X Y+1A) - E(X Y-1A ) (property 3) = E(X( Y+-Y-)1A ) = E(XY1A) .(
Property 10. Optimality. Let X ( L2. Consider the function D: L2((,F,P) ( [0,() given by 

D(Y) = ║X-Y║2 . Then D is convex and has an unique (a.s.) point of minimum which is exactly Y = E(X(F ). Moreover, the following Pythagora rule holds: 

║X-Y║22 = ║X-Y║22 + ║Y- E(X(F ) ║22.

 As a consequence the mapping EF : L2 ( L2((,F,P) given by EF (X) = E(X(F ) is the orthogonal projector from the Hilbert space L2 to the Hilbert subspace L2((,F,P).

Proof. Let Z= E(X(F ). Then ║X-Y║22 = E(X-Y)2 = E((X-Z)+(Z-Y))2 =

 E((X-Z)2) + E((Z-Y)2 + 2 E((X-Z)(Z-Y)) . The last term is equal to 2 E(E((X-Z)(Z-Y)(F )) (property 3) = 2E((Z-Y) E((X-Z)(F )) = 2E((Z-Y) (E(X(F )-Z)) = 2E((Z-Y) (Z-Z)) = 0. It means  that ║X-Y║22 = ║X-Y║22 + ║Z-Y║22 . 

Property 11. Conditioning and independence.  If X is independent on F , then E(X(F) = EX . It is not true in general  that E(X(F) = EX ( X is independent on F .  However,  if P(B(F ) = const ( P(B(F ) = P(B) ( B is independent on F .

 Proof. Let X be independent on F  and Y = EX. The task is to prove that Y fulfills the conditions (1.7). As measurability is obvious, let A ( F (hence A is independent on X ( X and 1A are independent) Then E(X1A) = EX ( E1A = EX(P(A) = E(EX(1A) = E(Y1A) checking the first claim. As about the converse, it cannot be true since it is enough to choose X = 1A – 1B with P(A) = P(B) = p and F  =((() where ( = ((j)j(J is an (at most) countable partition of (. Then EX = 0 and 

E(X(F) = P(A(F ) – P(B(F ) = 
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. If we choose A and B such that P(A(j) = P(B(j) ( pP((j) , that would be an example that it is possible that E(X(F) = EX = 0 but X be not independent on F, since P(X=1,(j) = P(A(j) ( P(X=1)P((j). 


However, suppose that P(B(F ) = c where c is a constant. By (1.7) this means that E(1A1B) = E(c1A) ( A ( F, or that P(AB) = cP(A) (  A ( F.  If A = ( one finds the constant c = P(B) and discovers that the definition relation (1.7) means that P(AB) = P(A)P(B) ( ( A ( F, in other words, that B is independent on F . (
Property 12. Regression. If F = ((Y) = Y-1(B ) where (E,B ) is a measurable space and Y : ( ( E  is measurable then the conditioned expectation E(X (((Y)) is denoted by E(X(Y) and is called the regression function of X given Y. The property is that E(X(Y) = h(Y) where h : ( ( ( is some measurable function. 

Proof. It has nothing to do with conditioned expectation, but with the following fact called the universality property: let (E,B ) be a measurable space and  Y : ( ( E be any. Endow ( with the (-algebra ((Y). Let Z : ( ( ( be ((Y)-measurable. Then there must exist a measurable function h : E ( ( such that Z = h(Y . The proof is standars: if Z = 1A then A ( ((Y) ( A = Y-1(B) for some B ( B , hence Z = 
[image: image32.wmf](

)

B

Y

1

1

-

= 1B (Y . It means that in this case h = 1B. The next step is when Z is simple: Z = 
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 with Ai ( ((Y) ( Ai = Y-1(Bi) for some Bi ( B . The h =
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 . If Z is any, then it is a limit of simple functions Zn = hn(Y . It is enough to put h = liminfn hn. In our very case the only fact that matters is that the regression function E(X(Y) must be ((Y) measurable. (
Property 13. Strict Jensen’s inequality. If f is twice differentiable and  strictly convex, then E(f(X)(F ) = f(E(X(F )) ( X =E(X(F ). As a consequence, if E(f(X)) = E( f (E(X(F ))) , then X =E(X(F ).

Proof. The assertion holds for any strictly convex function, but we shall prove it in the particular case when f is twice differentiable. Recall that a function f is said to be strictly convex iff the equality f(px+(1-p)y) = pf(x)+(1-p)f(y) with 0(p(1 is possible iff p ( {0,1} or if x = y. Or, equivalently, that the graph of f contains no segment of line. 

Let then f be strictly convex and twice differentiable. Then 

(2.1) f(x) = f(a) + f’(a)(x-a) + f’’(((x))
[image: image35.wmf](
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for some ( lying somewhere between a and x. Remark that the mapping x ( f’’(((x)), being a ratio between two continuous functions is continuous itself and thus,  measurable. Now replace in (2.1) x with X and a with E(X(F ). We get

(2.2) f(X) = f(a) + f’(a)(X-a) + f’’(((X))
[image: image36.wmf](
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Apply in (2.2) the conditional expectation. Then 

(2.3) E(f(X)(F ) = f(a) + f’(a)E(X-a(F) +E( f’’(((X))
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We applied the fact that f(a) and f’(a) are already F – measurable and property 8. Taking into account that E(X-a(F) = a – a = 0 it follows that

(2.4) E(f(X)(F ) = f(a) + E( f’’(((X))
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)

2

2

a

X

-

(F ) 

If E(f(X)(F ) = f(a) = f(E(X(F )) , then it means that E( f’’(((X))
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(F ) = 0. But f is convex, thus f’’ > 0. Being strictly convex, the set on which f’’ = 0 contains no interval. But if Y ( 0 and E(Y(F) = 0, then Y = 0 a.s. Thus f’’(((X))
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 = 0 a.s. Let A = {(( f’’(((X(()))=0} and B = {(( 
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= 0}. We know that P(A(B) = 1. If a ( A then f(X(()) = f(a) + f’(a)(X(()-a) . Well, that may happen only if X(() = a , else on the interval joining a andX(() f would be linear, which we denied. So in this case X(() = E(X(F)((). If ((B there is no problem either: X(() – a . So X= E(X(F) a.s.  The second assertion is stronger, but it comes from the fact that E(f(X)) = E( f(E(X(F )))  ( E(E(f(X)(F)) = E( f(E(X(F ))) ( E(f(X)(F)) =  f(E(X(F ))  (as if we know that U ( V and EU = EV then U = V, too!) ( X = E(X (F). (
Property 14. The “interior” and “adherence” of a set in a (-algebra. 

Let F  ( K  be a sub (-algebra and let A ( K. Define 

(2.5) (A )F = {((((P(A(F ) > 0} and (A )F = {((((P(A(F ) = 1}

Call (A )F the “adherence” and (A )F the “interior” of the set A in the (-algebra F . (Remark the quotation marks!). Remark also that these sets are defined only (a.s.), their definition depending on what version one uses for the conditional expectation!


Then

(2.6) (A )F  ( A ( (A )F (a.s.) and  (A )F , (A )F ( F .

(2.7) If C ( A (a.s.), C (F  then C ( (A )F ( a.s.)

(2.8) If A ( B (a.s.), B ( F  then  (A )F ( B (a.s.)

Notice that properties (2.7) and (2.8) are similar with the properties of the usual interior and adherence of a set in a topological space. Except that the inclusions are understood to be only a.s., namely C ( B means that P(C \ B) = 0

Proof. We prove first (2.6). Let  C = (A )F  , B = (A )F. As B,C ( F and 0 ( P(A(F ) ( 1 it follows that E(1C (F ) = 1C  ( P(A(F )( = E(1A(F)!)  ( 1B  = E(1B (F ) ( E(1A – 1C(F) ( 0 ( E(E(1A – 1C(F)1() ( 0 ( ( ( F  ( E((1A – 1C )1() ( 0 ( ( ( F (by the definition (1.7)!) ( P(A() – P(C() ( 0 ( ( ( F. If we choose ( = C it follows that P(AC) – P(C) ( 0 ( P(AC) = P(C) ( P(C \ A) = 0 ( C ( A (a.s.) . On the other hand  E(1B - 1A(F ) ( 0 ( P(B() – P(A() ( 0 ( ( ( F. If we choose ( = Bc it follows that P(BBc) – P(ABc) ( 0 ( P(A \ B ) = 0 ( A ( B (a.s.).

Now suppose that A ( B (a.s.), B ( F  then 1A ( 1B (a.s.) ( E(1A(F) ( E(1B(F) = 1B (a.s.) ( { E(1A(F) > 0} ( {1B > 0} ( (A )F ( B (a.s.). The same method if C ( A (a.s.), C (F : then 1C ( 1A (a.s.) (  1C =  E(1C(F) ( E(1A(F) ( {1C = 1} ( { E(1A(F) =1} ( C ( (A )F ( a.s.) .(
Example. If F =(((), where ( = ((j)j(J is an at most countable partition of (, then (A )F is the union of all the atoms (j having the property that P(A(j)>0  and (A )F is the union of all the atoms (j  such that P((j \ A) = 0. 

Property 15. Strict contractivity. If 1 < p < ( , then ║E(X(F )║p = ║X║p ( X = E(X(F ).

 If p ( {1,(} this is not true, but the following conditions hold:

(2.9) ║E(X(F )║1 = ║X║1 (  E(X+(F )(E(X-(F ) = 0 ( {X > 0}F ( {X < 0}F = ( (a.s.)

(2.10) ║E(X(F )║( = ║X║( ( ║P((X(>║X║(-((F )║( = 1 ( ( > 0.

Proof. Case 1. p ( (1, () . The function f(x) = (x(( is strictly convex and ║X║pp = E(f(X)) and ║E(X(F )║pp = E(f(E(X(F )). The assertion is a consequence of Property 11 (Strict Jensen Inequality).

Case 2. p = 1. ║E(X(F )║1 = ║X║1 means that E((E(X(F )() = E(X(=E(E((X((F )) (we applied Property 3). Using the convexity of the function f(x) = (x( it follows that (E(X(F )( ( E((X((F ). As these two functions have the same expectation, the only explanation is that that (E(X(F )( =  E((X((F ) ( (Y - Z( = Y + Z , where Y = E(X+(F ) ( 0 and Z = E(X-(F )( 0 . That happens iff Y = 0 or Z = 0 ( YZ = 0. 


Let us prove the second equivalence. Let B = {E(X+(F ) > 0} and C = {X > 0}F . We claim that B = C. Indeed, both these sets belong to F . Due to the definition (1.7) we have that  E(X+1B) = E(E(X+(F )1B) = E(E(X+(F )) (since always EY = E(Y1{Y(0}) !) = E(X+). But X+1B(X+ and have the same expectation ( X+1B = X+ (a.s.) ( {X+ ( 0} ( B ( {X > 0} ( B ( {X > 0}F ( B (by  (2.8)) ( C ( B. For the converse inclusion, remark that E(X+(F) 1C  = E(X+1C(F ) (property 8!) = E(X1{X>0}1C(F ) (as X+ = X1{X>0}!) = E(X1{X>0}(F ) (as {X>0} ( C !) = E(X+(F). Meaning that { E(X+(F)} ( C ( B ( C. In the same way one checks that the sets {E(X-(F ) > 0} and {X < 0}F coincide. Now it is clear that YZ = 0 ( {Y ( 0} ( {Z ( 0} = (.


Conversely, if {X > 0}F ( {X < 0}F = ( it follows that {Y > 0} ( {Z > 0} = ( (a.s.) ( (Y-Z(= Y + Z , proving our equivalences (2.9).

Example. If X = 1A – 1B , ║X║1 = P(A) + P(B) and ║E(X(F )║1= E((P(A(F )-P(B(F )(). These two quantities coincide iff (A)F ((B)F =( (a.s.).


Case 3. p = (. Let M = ║X║( . As ║X║( = ║(X(║(  we may as well suppose that X ( 0. We already know that  ║E(X(F )║( ( M . Let ( > 0. Then 

X ( M- ( + (1{X>M-(} ( E(X(F) (  M - ( + (P(X > M - ((F) 

( ║E(X(F )║( ( ║ M - ( + (P(X > M - ((F)║( = M - ( + (║ P(X > M - ((F)║( . If ║E(X(F )║( = M , then M ( M - ( + (║ P(X > M - ((F)║( ( (║ P(X > M - ((F)║( ( ( ( ║ P(X > M - ((F)║( ( 1 ( ║ P(X > M - ((F)║( = 1 proving the implication “(”. For the other implication remark that X ( (M - ()1(X  > M - (} ( E(X(F) ( (M-()P(X > M - ((F)  ( ║E(X(F)║( ( (M-()║P(X > M - ((F)║( = M-( for any (>0. Meaning that ║E(X(F)║( = 1. (
Example. Let ( = [1,(), K = B([1,()), F =((() with  (={[n,n+1)}n(1 , P = (((, ((x) = 1/x2 Let Ak = 
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 has the property that ║ P(Ak​(F) ║( = 
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= 1 . Notice that (Ak)F = (, (Ak)F = [k,() (a.s.) and, if X is the indicator of Ak, then {X >M-(} = {X = 1} = Ak has void interior. Still, ║P(X > M - ((F) ║( = ║ P(Ak​(F) ║( =  1 ( ( > 0.
3. Regular conditioned distribution of a random variable.

Let X : ( ( E be a measurable function, where (E,E ) is a measurable space. Let F  ( K  be a sub-(-algebra. Then we know that the conditioned distribution of X given F is the mapping B ( (P(X-1)(B (F ) from E  to the set of the F –measurable random variables assuming values between 0 and 1. This mapping is somewhat similar to a distribution in the following sense: if (Bn)n is a sequence of disjoint sets from E , then

(3.1)
 (P(X-1)(
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(P(X-1)(Bn (F ) (a.s.).

The reason is the following : (P(X-1)(
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Bn) (F ) (by definition!)  = E(
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(F ) (again by definition of the conditioned probability) = E(
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(X)(F ) (since 
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(X)(F ) (as the sets are disjoint!) = 
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(X)(F )  (a.s.) (by Property 8.1 conditioned Beppo-Levi !) =  
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(P(X-1)(Bn (F ) . 

The trouble is that the equality (3.1) holds only almost surely. That is, the set of those ( ( ( having the property that (P(X-1)(
[image: image60.wmf]U

¥

=

1

n

Bn (F )(() ( 
[image: image61.wmf]å

¥

=

1

n

(P(X-1)(Bn (F ) (() is neglectable. We would like to find a neglectable set , N such that if ( ( N then (P(X-1)(
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(P(X-1)(Bn (F ) (() for all the sequences of disjoint sets (Bn)n . In that case P(X-1(((F )(() would be a real probability on (E,E ) for all ( (N . That is the regular conditioned distribution of X given F.

To be precise

Definition. Let (E,E ) be a measurable space and X : ( ( E be a measurable function. A function Q : ((E  ( [0,1] having the properties

(i).
( ( Q((,B) is a version for P(X-1(B)( F ) (() ( B (E ;

(ii). B ( Q((,B) is a probability on (E,E ) ( ( ( (
is called the regular conditioned distribution of X given F. Another name for this object could be: a regular version for the conditioned distribution of X given F. 


At a first glance it is not at all obvious why such a regular version should exist at all.


We shall prove the following rather remarkable fact: 

Proposition 3.1.  If (E,E ) = ((,B(()) then a regular version for P(X-1(((F ) exists for any sub-(-algebra F . 

Proof. Let ( ( ( be  the set of rational numbers . 

Let us define the function G: ((( ( [0,1] by  G(x,() =P(X ( x(F )(() = E(1(-(,x](X)(F )(() . (We choose arbitrary versions for P(X ( x (F) !). Let x < y ( (. Let Ax,y = {((G(x,() > G(y,()}. Due to the monotonicity of the conditional expectation (Property 5) all the sets Ax,y are neglectable. Let then x ( ( be any and define  the sets  Bx = {(( 
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, the conditioned Beppo Levi theorem (Property 8.1) says that P(X ( x(F ) = lim P(X (  x+
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(F ) (a.s.) , i.e. the sets Bx are neglectable, too. Let further  C := {((limx ( - ( G(x,() ( 0} and D ={((limx ( + ( G(x,() ( 1} . Again by Beppo-Levy , the sets C and D are neglectable.   Let N be the union of all these sets  : N = 
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( C ( D (F . Being a countable union of neglectable sets , N is neglectable itself. Let (0 = ( \ N. Then P((0)=1 and 

(3.2) ( ((0 ( x ( G(x,() is non-decreasing , G(x,() = limnG( x+
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Let us define a new function F : ((( ( [0,1] by

(3.3) F(x,() = 
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We claim that 

(i).
x  ( F(x,() is a distribution function for any (;

(ii). 
( ( F(x,() is F –measurable for any x((;

(iii). 
F(x) = P(X ( x(F ) (a.s.) for any x ( (.


Let us check (i). For ( ( (0, there is nothing to prove. Suppose that ( ( (0. Clearly F is non decreasing. If x ( (, then by (3.2) we see that F(x,() = G(x,() . So F(-(,()=0, F((,() = 1. The only problem is to prove that F((,() is right-continuous. If ( ( (​0 , this is obvious. In this case F(x,() = 1[0,()(x). Suppose that (((0 is fixed. We shall not write it, to simplify the writing. Then 
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F(y) = inf {F(y)(y ((x,()} (as F is non-decreasing !) = inf {inf {G(a)(a((y,()((}( y ((x,()} = inf {G(a) ( a ( 
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(y,()((} (as for any function G and any family of sets (A()((I the equality inf {inf G(x)(x ( A(}(( ( I } = inf {G(x) ( x (
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A( } obviously holds – check it as an amusing exercise!) = inf {G(a)(a ( (x,()(( } = F(x) . So F is right – continuous. As the functions G(a) are   F –measurable it follows that F is F –measurable, too. 


Now we shall check (iii). Actually we shall prove more. Let (((,() be the probability measure on ((,B(()) whose distribution function is F((,(), i.e. (((-(,x],() = F(x,() ( x ( (. Let us denote by C  the family of sets fulfilling the relation

(3.4) the set NB : = {( ( ((B,() ( E(1B(X)(F )(() } is neglectable

The claim is that

(i).
 C  contains the family M = {(-(,a] ( a ( ( }

(this is clear: (((-(,a],() = F(a,()   = G(a,() = E(1(-(,a](X)(F )(()  ( ( ( (0!)

(ii).
 C  is a (-system.

(indeed,

-
if B ( C  then ((B,.) = E(1B(X)(F ) (a.s.) . On the other hand  ((Bc,.) = 1- ((B,.) = 1- E(1B(X)(F )  (a.s.) = E(1 – 1B(X)(F ) (a.s.) = E(
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From (i) and (ii) it follows that C  contains the (=system generated by M . It happens that this coincide with B((). The conclusion is: ((B,.) = E(1B(X)(F ) (a.s) ( B ( B((). Or, in another notation, ((B,.) = P(X-1 (B (F ) (a.s.) . Therefore ( is a regular version for P(X-1(((F ). (

The utility of the regular conditioned distribution is given by 

Proposition 3.2. The transport formulla.
Let (E,E ) be a measurable space , X : ( ( E be a measurable function and F  ( K be a (-algebra. Suppose that X admits a regular version for its conditioned distribution (P(X-1)(((F ). 

Let f : E ( ( be measurable such that f(X) ( L1. Then 

(3.5) E(f(X)(F ) = 
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Proof. It is standard. Let us denote the regular version of (P(X-1)(B(F )(() by ((B,(). To avoid confusions, we shall denote the integral with respect to this family of measures by  
[image: image84.wmf]ò

f(x)((dx,(). If we shall write 
[image: image85.wmf]ò

fd( we shall understand the random variable (
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fd()(() := 
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f(x)((dx,().

-
Step 1. f is an indicator. So let f = 1B , B ( E .

 Then E(f(X)(F ) = E(1B (X)(F ) = P(X-1(B)(F ) (a.s.) = 
[image: image88.wmf]ò

1B d(
-
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fd( (  E(f(X)(F ) = 
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fd( (a.s.)

-
Step 3. f is nonnegative. Then f = 
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fn d(  (by Step 2!) = 
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fd( (  E(f(X)(F ) = 
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fd( (a.s.)
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Step 4. f is any. Then f = f+ - f- where f+ , f-  are the positive (negative) parts of f . It follows that E(f(X)(F ) = E(f+(X)(F ) - E(f-(X)(F ) (a.s.) (linearity) = 
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f- d( (a.s.) (by step 3) = 
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fd(  ( E(f(X)(F ) = 
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Corollary 3.3. Conditioned expectation and variance. Let X : ( ( ( be a random variable from L2  and F  ( K  be a (-algebra. Let ( be a regular version for its conditioned distribution, ( = (P(X-1)(((F ). We know that ( exists due to Proposition 3.1. 

Then the conditioned expectation is given by

(3.6) E(X(F ) (() = 
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x ((dx,()  (a.s.), E(X2(F ) (() = 
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And the conditioned variance E((X – E(X(F )2(F ) is given by

(3.7) Var(X2(F ) (() = 
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x2 ((dx,()  - (
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x ((dx,()  )2
Proof.  These are easy consequences of the transport formulla, the first relation with the function f(x) = x . For the second one notice that E((X – E(X(F )2(F ) = E(X2–2X E(X(F) + E(X(F )2(F ) = E(X2(F ) - 2 E(X(F )(E(X(F ) + E(X(F )2 (by Property 9!) = E(X2(F ) – E(X(F )2. (

Now we shall busy ourselves to find more or less practical formulae to compute the conditioned regular distributions. 

Corollary 3.4. If X is a real r.v. , (E,E ) is any measurable space and Y : ( ( E ia measurable  then a regular version for (P(X-1)(((((Y))  exists . It is denoted by   (P(X-1)(((Y)  and has the form (P(X-1)(B(Y)(()  = ((B, Y(()) where ( : B(() ( E (  [0,1] has the properties

(i).
B ( ((B, y) is a probability on ((,B(()) ( y ( Range(Y) ;( If Range(Y)(E  then ( may be chosen such that (i) hold for any y ( E!)

(ii) y ( ((B, y) is E -measurable ( B ( B(().

Proof. Let F = ((Y). According to Proposition 3.1. a regular version for (P(X-1)(((F)  exists. Denote it by (. According to the definition, ( fulfills the following assumptions:

-
B ( ((B,() is a probability on ((,B(()) ( ( ( (;

-
( ( ((B,() is F - measurable ( B ( B(() ;

-
The set NB = {( ( ((B,() ( P(X-1(B)(F )(()} is neglectable ( B ( B(() .

As F = ((Y) by property 12 ((B,() must be of the form ((B,() = hB(Y(()) where hB : E ( (  is E –measurable, and this measurability explains the claim (ii). Let us denote hB(Y(()) by ((B, Y(()). Then B ( ((B, y) is a probability on ((,B(()) ( y ( Range(Y). Indeed, let y = Y(() ( Range(Y) and let (Bn)n be a sequence of disjoint Borel sets. Then ((
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((Bn,y). The problem is that B ( ((B, y) may not be a probability when y ( Range(Y) . If we know that Range(Y)(E , that  will not be a problem We may define, for instance (*(B,y) to be equal to ((B,y) if y ( Range(Y) and with (0(B) if y ( Range(Y). In that way we shall obtain a probability on ((,B(()) and the measurability will be preserved due to the following fact: if f : E ( ( is measurable and A (E , then g := f 1A + c
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 is measurable, too no matter of the constant c. In our case f = ((B,() and c = (0(B) = 1B(0). (

In some cases we can find more useful formulae. For instance, when F is given by an at most countable partition ((i)i(I . In that case a regular conditioned distribution exists if X : ( ( E, (E,E ) any measurable space.


Proposition 3.5. Let (E,E ) be a measurable space , X : ( ( E be  measurable and F  be given by an at most countable partition ((i)i(I .   Then a regular conditioned distribution of X given F  exists and it is given by the formula

(3.8) (P(X-1)(((F ) = 
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where I0 = {i ( I (P((i) ( 0} and 
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 as defined in 1.1, (* is arbitrary and ( is the union of the neglectable athoms (i . Of course ( is neglectable itself. If there are no neglectable athoms, this second term of (3.8) vanishes.
Proof. Let B (E . Then (P(X-1)(B(F ) = P(X-1(B)( F ) = 
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(().  The F - measurability of the function ( ( ((B,() is obvious, the fact that for any given ( the function B ( ((B,() = 
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(B) (with (i the unique set containing () is a probability is clear, too, due to the definition 1.1.  Finally, ((B,() coincides with (P(X-1)(((F ) (a.s.). (
Corollary 3.5. If (E,E ), (F,F ) are measurable spaces  X : ( ( E,  Y : ( ( F is discrete (thus F contains the singletons)  then 

(3.9) (P(X-1)(((Y ) = 
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where  I0 = {y (F (P(Y=y) > 0} and ( = {( (Y(()=y,y(Range(Y) \ I0 } is neglectable. 

Proof..  According to our hypothesis, I is at most countable.  Then  we have 

P(X ( B ( Y ) = P(X ( B ( ((Y )) = 
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We can let the formula as it is, but if ( belongs to the neglectable set {Y(()=y(y(Range(Y) \ I }, then P(X ( B ( Y )(() = 0 ( B and that would not be a probability. To have a regular version, we have to add a fictive probability (* on the set (.(
Corollary 3.6. The discrete  case.

Suppose that the vector (X,Y) is discrete. It means that I := {(x,y)(P(X=x,Y=y) ( 0} is at most countable and P((X,Y)-1(Ic) ) = 0. Let p(x,y) = P(X=x,Y=y), hence P((X,Y)-1 = 
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(x,y . Then X is discrete, too. Let I1 = pr1(I) and I2 = pr2(I). Of course I1 and I2 are at most countable, I ( I1(I2 . Then 

(3.10) (P(X​-1)(((Y) = 
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(3.11) (P(Y​-1)(((X) = 
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Proof. Remark that  the distribution of X is P(X-1 = 
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 ( x ( I1. This is a discrete distribution which can be written in a shorter form as (P(X​1)(((Y) = 
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Remark. In statistics one prefers the notation pX , pY, pX(Y and pY(X instead of p1,p2, p(X=x(Y=y) and p(Y=y(X=x). 


A remarkable fact is that an analog of (3.10) and (3.11) exists in the absolutely continuous case. We shall prove that in the special case when X,Y are real random variables and the vector (X,Y) is absolutely continunous, meaning that P((X,Y)-1 = (((2, ( being the Lebesgue measure. 


Proposition  3.7. 

(3.12) (P(X​-1)(((Y)(()= (1(2((,()((
(3.13) (P(Y​-1)(((X) =  (2(1((,()((
where (1(2(x,() =  
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Remark. In statistics one uses the notations (X  instead of (1, (Y  instead of (2 , (X(Y=y  instead of (1(2 and (Y(X=x instead of (2(1. They also use the notation P(X (A(Y = y) instead of P(X(A(Y )(() which can be very misleading for a beginner, because they have no immediate meaning.

Proof. 

It is easy to see that (1 and (2 are the densities of X and Y (For instance, P(X(A) = P((X,Y)(A(() = 
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We shall prove (3.12). The task is to check that (P(X​-1)(A(Y)(()= ((1(2((,()(()(A) for almost all (. Or , to check that E(1A(X)(Y) = 
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(X,Y) dP (by the transport formula) = E(1A(B(X,Y)) hence (3.14) follows. The equality (3.13) has a similar proof. (
Remark. The statistical notation has its own reason. After all the formulae (3.12) and (3.13) come from the natural feeling that something that holds in the discrete case must also hold somehow in the absolutely continuous settings. Namely , if P(X (A(Y = y) should have a sense at all, it should be lim((0 P(X (A(y-( < Y < y+(). Sometimes this is true and coincides with 
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Proposition 3.8. If ( and (2 are continuous, then

(3.15)
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