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Convergence of martingales


Convergence of martingales

1. Maximal inequalities

Let ((,K,P,(Fn)n ( 1) be a stochastic basis and X = (Xn)n be an adapted sequence of random variables. The random variable X* := sup{(Xn(; n ( 1} is called the maximal variable of X. A maximal inequality is any inequality concerning X*. 

We shall also denote by X*n the random variable max((X1(,(X2(,…,(Xn(). Thus X* = limnX*n = supnX*n .

There are many ways to organize the material: we adopted that of Jacques Neveu (Martingales a temps discrete Masson 1972).

We start with a result concerning the combination of two supermartingales.

Proposition 1.1. Let (Xn)n and (Yn)n be two supermartingales. Let ( be stopping times. Suppose that if

(1.1)
 (<(, then X( ( Y(. Define Zn = Xn1{n < (} + Yn1{n ( (} .

Then Z is again a supermartingale.

Proof. The task is to prove that E(Zn+1(Fn) ( Zn .

But Zn = Xn1{n < (} + Yn1{n ( (} ( 1{n < (}E(Xn+1( Fn) + 1{n ( (}E(Yn+1(Fn) (as X and Y are supermartingales!) =  E(Xn+11{n < (}( Fn)  + E(Yn+11{n ( (}(Fn)  (since ( is a stopping time both sets are in Fn!) = E(Xn+11{n < (}+ Yn+11{n ( (}(Fn) = E(Xn+11{n+1 < (}+Xn+11{( = n+1}+ Yn+11{n ( (}(Fn) (  E(Xn+11{n+1 < (}+Yn+11{( = n+1}+ Yn+11{n ( (}(Fn) (since X( ( Y( hence ( = n+1 ( Xn+1 ( Y​n+1!) = E(Xn+11{n+1 < (}+Yn+11{n+1 ((}(Fn)  = E(Zn+1(Fn). (
Corollary 1.2. Maximal inequality for nonnegative supermartingales. 

The following inequality holds if X is a non-negative supermartingale:

(1.2) P(X* > a) ( 
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Proof. Let us consider the stopping time

(1.3) ( = inf {n ( Xn > a} (convention: inf ( = (!) 

 Remark the obvious fact  that X* > a ( ( < (. 

In the previous proposition we consider Xn to be even our supermartingale X  and Yn = a (any constant is of course a martingale). The condition (1.1) is fulfilled since ( < ( ( X( > a. It means that Zn = Xn1{n<(} + a1{((n} is a supermartingale hence EZn ( EZ1 = E(X11{((1} +a1{ (=1}) ( EX1 (since (=1 ( X( = X1 > a) . As a1{((n} ( Zn it means that aP(((n) ( EZn ( P(((n) (
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Corollary 1.3. If X is a nonnegative supermartingale, then X* < ( a.s.

Proof. P(X* = () ( P(X* > a) ( 
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It follows that for almost all ( ( ( the sequence (Xn(())n is bounded.

We shall prove now a maximal inequality for the submartingales.

Proposition 1.4 . Let X be a submartingale. Then

(1.4) P(X* > a) ( 
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(1.5) P(X*n > a) ( 
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Proof. Let m = supn E(Xn( , let a > 0 and let Yn = (Xn(. Then Y is another submartingale, by Jensen’s inequality  hence m = limn(( E(Xn(. Let

(1.6)
( = inf {n ( Yn > a}  (inf ( := (!)

Then the stopped sequence (Yn(()n remains a submartingale (any bounded stopping time is regular!) and Y((n ( a1{((n} + Yn1{(>n}. (Indeed, by the very definition of ( , (<( ( Y( > a!)

It follows that a1{((n} ( Y((n ( aP(( ( n) ( EY((n ( EYn ( m (the stopping theorem applied to the pair of regular stopping times ((n and n!) . It means that P(( ( n) ( 
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 for any n hence P((<( ) ( 
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. But clearly {( < (} = {X* > a}.

 The second inequality comes from the remark that ( ( n ( X*n > a . So a1{((n} (  Y((n1{((n} ( aP(( ( n) ( E(Y((n1{((n}) ( E(Yn1{((n}) (as ((n ( n ( Y((n ( E(Yn(F((n) by the stopping theorem ( E(Y((n1A) ( E(Yn1A) ( A ( F((n ; our A is {( ( n}!) . Recalling that {( ( n} = {X*n > a} we discover that aP(X*n > a) ( E(Yn1{ X*n > a })  = E((Xn(1{ X*n > a }) which is exactly (1.5).  (
We shall prove now another kind of maximal inequalities concerned with ║X*║p : the so-called Doob’s inequalities.

Proposition 1.5. Let X be a martingale

(i).
 Suppose that Xn ( Lp ( n for some 1 < p < (. Let q = p/(p-1) be the Holder conjugate of p.   Then

(1.7) ║X*║p ( q supn║Xn║p
(ii).
If Xn are only in L1, then

(1.8) ║X*║1 ( 
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Proof. 

(i).
Recall the following trick when dealing with non-negative random variables: if f:[0,() ( ( is differentiable and X > 0, then Ef(X) = f(0) + 
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If f(x) = xp the above formula becomes EXp =
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Now write (1.5) as tP(X*n> t) ( E(Yn1{X*n > t}) and multiply it with ptp-1. We obtain

ptp-1P(X*n> t) ( ptp-2E(Yn1{S*n > t}). Integrating, one gets E(X*np) ( 
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 (we applied Fubini, the nonnegative case) = q
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 = qE(Yn(X*n)p-1) ( q║Yn║p║ (X*n)p-1║q (Holder !) . But ║ (X*n)p-1║q = 
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= ║X*n║pp-1 hence we obtained the inequality ║X*n║pp = E(X*np) ( q║Yn║p║ (X*n)p-1║q = q║Yn║p║X*n║pp-1 or

(1.9) ║X*n║pp ( q║Yn║p ( n.

As a consequence, ║X*n║pp ( qsupk║Yk║p ( n. But (X*n)n is an increasing sequence of nonnegative random variables. By Beppo-Levi we see that ║X*║pp =limn((║X*n║pp ( qsupk║Yk║p proving the inequality (1.7).

(ii).
Look again at (1.5) written as P(X*n> t) ( 
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hence the result is

(1.10)
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Now look at the right hand term of (1.10). The integrand is of the form  aln+b. As alnb = aln(a(
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 and x > 0 ( lnx ( x/e , it follows that alnb ( alna + a
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 and if b ( 1, then aln+b = 0 ( 
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(1.11)
aln+b ( aln+a + 
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Using (1.11) in (1.10) one gets 
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 implying that (1-e-1) EX*n ( 1 + E(Ynln+Yn) ( n. Remark that the sequence (Ynln+Yn)n is a submartingale due to the convexity of the function x ( xln+x and Jensen’s inequality. So the sequence (E(Ynln+Yn))n is non-decreasing. Be as it may, it is clear now that (1-e-1) EX*n ( 1 + supk E(Ykln+Yk) which implies (1.8) letting n ( (.(

Remark. If sup ║Xn║p < ( , we say that X is bounded in Lp. Doob’s inequalities point out that if p>1 and X is bounded in Lp then X* is in Lp. However, this doesn’t hold for p=1 : if X is bounded in L1, X* may not be in L1. A counterexample is the martingale from Example 4 , previous lesson. If we want X* to be in L1, it means that we want X to be bounded in Lln+L . Meaning the condition (1.8).

2. Almost sure convergence of semimartingales

We begin with the convergence of the non-negative supermartingales.

If X is a non-negative supermartingale, we know from Corollary 1.3 that X* < ( a.s, that is, the sequence (Xn)n is bounded a.s. . So lim inf Xn ( - (, lim sup Xn ( +(. In this case the fact that (Xn(())n diverges is the same with the following claim: 

(2.1) There exist a,b rationale numbers, 0 < a < b such that the set {n ( Xn(() < a and Xn+k(() > b for some k > 0} is infinite

Indeed, (Xn(())n diverges ( ( : = lim inf Xn(() < lim sup Xn(() := (, 0 ( ( < ( < (., then some subsequence of (Xn(())n converges to ( and other subsequence converges to (; so for any rationales a,b such that ( < a < b < ( the first subsequence is smaller than a and the second is greater than b. 

Let us fix a,b ( Q+, a < b and consider the following sequence of random variables:

(1(() = inf { n ( Xn(() < a}; (2(() = inf { n > (1(() ( Xn(() > b} …..

(2n​-1(() = inf { n > (2n-2(()( Xn(() < a}; (2n(() = inf { n > (2n-1(() ( Xn(() > b} …

(always with the convention inf ( = (!)  . Then it is easy to see that (n are stopping times. Indeed, it is an induction: (1 is a stopping time and {(k+1 = n} = 
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(k = j,Xj+1 ( B , … , Xn-1 ( B, Xn(B} ( Fn (since the first set is Fj ( Fn), where B = (b,() if k is odd and B = (-(,a) if k is even. 

Let (a,b(() = max{n ( (2k(() < (}. Then (a,b means the number of times the sequence X(() crossed the interval (a,b) (the number of upcrossings) 

The idea of the proof (belonging to Dubins) is that the sequence X(() is convergent iff (a,b(() is finite for any a,b ( Q+. 

Notice the crucial fact that 

(2.2)
(a,b(() ( k 
(
(2k(() < (

Lemma 2.1.  The bounded sequence Xn is convergent iff (a,b < ( a.s. ( a,b( Q+, a < b.


Proof.  Let E = {(((Xn(())n is divergent}. Then (( E ( (  a,b( Q+, a < b such that (a,b(() = (. In other words E = 
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. Clearly P(E) = 0 ( P((a,b = () = 0 ( a < b, a,b( Q+. (

Proposition 2.2 (Dubins’ inequality)
(2.3) P((a,b ( k ) ( (
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Proof.

Let k be fixed and define the sequence Z of random variables as follows:

Zn(() = 1 
if 
n < (1(()
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(2(() ( n < (3(() (notice that (2(() <( ( 
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Because the constant sequences X(j)n = (
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are nonnegative supermartingales and we took care that at the combining moment (j the jump be downward, it means that we can apply Proposition (1.1) with the result that Z is a non-negative supermartingale. Moreover, Zn ( (
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 ( EZn ( EZ1 (  1. We obtain the inequality P((2k ( n ) ( (
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Corollary. 2.3. Any non-negative supermartingale X converges a.s. to a random variable X( such that E(X((Fn) ( Xn. In words, we can add to X its tail X( such that (X,X() remains a supermartingale. 

Proof. From (2.3) we infer that P((a,b = () = 0 ( a < b positive rationales which, together with Lemma 2.1 implies the first assertion. The second one comes from Fatou’s lemma (see the lesson about conditioning!) : E(X((Fn) = E(liminfk((Xn+k(Fn) ( liminfn(( E(Xn+k(Fn) ( Xn. (
Remarks.1. Example 4 points out that we cannot automatically replace “nonnegative supermartingale” with “nonnegative martingale” to get a similar result for martingales. In that example X( = 0 while EXn = 1. So (X,X() , while supermartingale, is not a martingale.

2. Changing signs one gets a similar result for non-positive submartingales. 

3. Example 5 points out that not all martingales converge. Rather the contrary, if (n are i.i.d such E(n = 0 then the martingale Xn = (1 + … + (n never converges, except in the trivial case (n = 0. Use CLT to check that!

We study now the convergence of the submartingales.

Proposition 2.4. Let X be a submartingale with the property that supn E(Xn)+ < (. Then Xn converges a.s. to some X( ( L1.

Proof. Let Yn = (Xn)+. As x ( x+ is convex and non-decreasing, Y is another submartingale. Let Zp = E(Yp(Fn), p ( n. Then Zp+1 = E(Yp+1(Fn) ( E(E(Yp+1(Fp) (Fn) ( E(Yp(Fn) hence (Zp)p(n is nondecreasing. Let Mn = limp((Zp . 

We claim that (Mn)n is a non-negative martingale. First of all, EMn = E(limp((Zp) = limp((E(Zp) (Beppo-Levi) = limp((E(Yp) = supp E(Xp)+ < ( (as Y is a submartingale). Therefore Mn ( L1. Next, E(Mn+1( Fn) = E(limp(( E(Yp(Fn+1)(Fn) = limp(( E(E(Yp(Fn+1)(Fn) (conditioned Beppo-Levi!) = limp(( E(Yp(Fn) = Mn. Thus M is a martingale. Being non-negative, it has an a.s limit, M( , by Corollary 2.3. 

Let Un = Mn - Xn .

Then  U is a supermartingale and Un ( 0 (clearly, since Un = limp(( E(Yp(Fn) - Xn = limp(( E(Yp - Xn (Fn) = limp(( E((Xp)+  - Xn (Fn) ( limp(( E(Xp  - Xn (Fn) ( 0 (keep in mind that X is a submartingale!). 

By Corollary 2.3, U has a limit, too , in L1. Denote it by U(.  

It follows that X = M – U is a diference between two convergent sequences. As both M( and U( are finite, the meaning is that X has a limit itself, X( ( L1. 

Corollary 2.5. If X is a martingale, supn E(Xn)+ < ( is equivalent with supn E((Xn() < ( . In that case X has an almost sure limit, X(.


Proof. (x( = 2x+ - x ( E((Xn() = 2E(Xn)+ - EXn . But EXn is a constant, say a . Therefore supn E(Xn( = 2supnEXn+ - a..(

Here is a very interesting consequence of this theory, consequence that deals with random walks.


Corollary 2.6. Let ( = ((n)n i.i.d. rev. from L(. Let Sn = (1+…+(n, S0 = 0 and let m = E(1. Let a ( ( and ( = (a be the hitting time of (a,(), that is, ( = inf {n ( Sn > a}. Suppose that (n are not constants.


Then m ( 0 ( ( < ( (a.s.).


The same holds for the hitting time of the interval (-(,a). 


Proof. If m > 0 , it is simple. The sequence Sn converges a.s. to ( due to the LLN. (Sn/n ( m > 0 ( Sn ( ( !) . The problem is if m = 0 . In that case let Xn = a - Sn. Then X is a martingale and EXn = a.  If a < 0, (=0 and there is nothing to prove. So we shall suppose that a(0. In this case X0 = a ( 0 and

(2.4)
 ( = inf{n (Xn < 0} .


Here is how we shall use the boundedness of the steps (n. Let M = ║(n║(. Then –M ( (n ( M a.s. 


The stopping theorem tells us that Y = (Xn(()n is another martingale, since every bounded stopping time (we mean ((n !) is regular. But  Yn ( - M  since for n > ( ( Yn = Xn ( 0 (from (2.4))   and  n ( ( ( Yn =  X( = X(-1 + ((  (  X(-1 – M  (  0 – M = M. So Yn+M is another martingale, this time nonnegative. By Corollary 2.5 Yn+M should converge a.s. . Subtracting M, it follows that Yn ( f for some f ( L1. So Xn(( ( f  ( a - Sn(( ( f   (  Sn(( ( a-f    . Let E = {(=(}. If ( ( E, then a-f(() = limSn((). Meaning that Sn(() is convergent.


Well, the sequence Sn diverges a.s. 

Here is why: if (Sn)n would be convergent, then it should be Cauchy. Thus (Sn+k – Sn (< ( ( k for great n. Hence (Sn+k – Sn (< (, (Sn+2k – Sn-k (< (, (Sn+3k – Sn-2k (< (, … . But if (n are not constants, there exists a k such that P((Sn+k – Sn (< () =q < 1. Then , as the above differences are i.i.d., P((Sn+k – Sn (< (, (Sn+2k – Sn-k (< (, (Sn+3k – Sn-2k (< (,…) = q(q(q(…= 0. So P({(((Sn(())n is Cauchy} = 0. 

The only conclusion is that P(E) = 0. (
3.

Uniform integrability and the convergence of semimartingales in L1


We want to establish conditions such that a martingale X converge to X( in L1. In that case we shall call X a martingale with tail.


Proposition 3.1.

If X is a martingale and Xn ( X( in L1, then Xn = E(X((Fn).


Proof. From the definition of the conditioned expectation we see that the claim is that E(Xn1A) = E(X(1A) for any A (Fn. But Xn+k ( X( in L1 as k ( ( ( E(Xn+k1A) ( E(X(1A) as k((. And E(Xn+k1A) = E(E(Xn+k1A(Fn)) = E(1A E(Xn+k(Fn)) = E(1A Xn).(

Proposition 3.2. Conversely, if Xn = E(f(Fn) then Xn ( E(f(F() both a.s. and in L1. 


Proof. Let Z = E(f(F(). 

Suppose first that f ( 0. Then Xn is a nonnegative martingale. According to Corollary 1.3 X converges a.s. to some X​ ( from L1. 

Step 1. If f is even bounded, f ( M , then Xn ( M too; hence X( ( M ( (X ( - Xn(( 2M. By Lebesgue’s domination criterion E(X ( - Xn(( 0, thus Xn ( X ( in L1. Moreover, if A ( Fn then E(Xn+k1A) ( E(X (1A) thus E(X (1A) = limk(( E(E(Xn+k1A(Fn)) = limk(( E(1A E(Xn+k(Fn))= E(1A Xn) (since X is a martingale!). It means that E(X((Fn) = Xn . But E(Z(Fn) = E(E(f(F()(Fn) = E(f(Fn) – Xn . Therefore Z and X( are both from L1(F() and E(Z(Fn) = E(X((Fn) ( n. As F( is generated by the union of all F( and that union is an algebra  it follows that Z = X (. We proved the claim if f is bounded and nonnegative.

Step 2. If f ( 0, let fa = f(a. Let a be great enough such that ║f-fa║1 < ( for a given arbitrary (. Then ║E(f(F() - E(f(Fn)║1 ( ║E(f(F() - E(fa(F()║1 + ║E(fa(F() - E(fa(Fn)║1 + ║E(fa(Fn) - E(f(Fn)║1 ( ║f - fa║1 + ║E(fa(F() - E(fa(Fn)║1 + ║fa - f║1 (due to the contractivity of the conditioned expectation, see the lesson!) 2( +  ║E(fa(F() - E(fa(Fn)║1. According to step 1, the second term converges to 0 (as fa is bounded and nonnegative). It follows that limsupn((║E(f(F() - E(f(Fn)║1 ( 2( + 0 ( E(f(Fn) ( E(f(F() in L1.

Step 3. f any. We write f =f+ - f- . Then E(f+(Fn) ( E(f+(F() both a.s. and in L1 and the same holds for E(f-(Fn) ( E(f-(F(). Subtracting the two relations we infer that E(f(Fn) ( E(f(F() both a.s. and in L1. (
Remark. The result of proposition 3.1 and 3.2 is that even if all the martingales bounded in L1 converge a.s., only the martingales of the form Xn = E(f(Fn) have a tail – that is, converge to it’s a.s.- limit in L1
Definition. Let X = (Xn)n be a sequence of random variables from L1. We say that X is uniformly integrable iff for any (>0 there exists an a = a(() such that E((Xn(
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Notice that can write the condition from the definition also as E(Xn -(a(Xn)) < ( ( n, where (a(x) = (x(a)((-a) or as E((Xn(-(Xn((a) < ( (n.

Proposition 3.3. If X is uniformly integrable, then X is bounded in L1.

Proof. Let (>0 and a as in the definition. Then E(Xn(=E((Xn((a + ((Xn(-(Xn((a)) ( a + ( ( n .(
 The importance of this concept is given by

Proposition 3.4. Let X be a sequence of r.v. from L1. Suppose that Xn ( X( a.s.  Then Xn ( X( in L1 iff X is uniformly integrable.

Proof. “(”. Let (>0. Let a such that ║(X(( - (X(((a║1 < (/3. Let n(() be such that n > n(() ( ║X( - Xn║1 < (/3. Then n > n( ( ║(Xn( - (Xn((a║1 ( ║(Xn( - (X((║1 + ║(X(( - (X(((a║1 + ║(X(((a - (Xn((a║1 ( (/3 + (/3 +  ║(Xn( - (X((║1 ( 3(/3 = (. 

For n ( n(() let bn > 0 be such that ║(Xn( - (Xn((bn║1 < (. Finally, let A = max{a,b1,b2,…,bn(()}. Then E((Xn(-(Xn((A) < ( ( n.

“(”.  Let (>0 and a as in the definition of uniform integrability; from Fatou we infer that X( is in L1, too as E(X((= E(liminfn(((Xn() ( liminfn((E((Xn) < ( (according to proposition 3.3!). Let then a be chosen such that ║(X( (- (X(((a║1 < ( and ║(Xn((a - (Xn(║ < ( ( n.
Then ║X(-Xn║​1 ( ║X( - (a(X()║1 + ║(a(X () – (a(Xn)║1 + ║(a(Xn) - Xn║ = I + II + III. The first term is ║(X( (- (X(((a║1 < (; the last one is ║(Xn((a - (Xn(║ < (; as about the term II, Xn ( X( (  (a(Xn) ( (a(X() since (a is continuous. But the sequence ((a(Xn))n is dominated by a therefore ║(a(X () – (a(Xn)║1 ( 0 as n ( ( by Lebesgue’s domination principle. 

The conclusion is that liminfn((║X(-Xn║​1 ( 2(. And  is arbitrary … (
Corroborating with propositions 3.1 and 3.2 we arrive at the following conclusion:

Corollary 3.5. The only martingales with tail are the uniform integrables ones.

How can we decide if a martingale is uniformly integrable?

Here is a very useful criterion.

Proposition 3.6. (The criterion of Valee Poussin)

X is uniformly integrable (
there exists an nondecreasing function (:[0,() ( [0,() with the property that ((t)/t ( ( as t ( ( such that sup{E(((Xn() (n} < (.

We can say that uniform integrability = boundedness in some ( faster that x to infinity. Actually we shall see that this function ( may be chosen to be even convex.

Proof. “(”. We shall first establish an auxiliary result:

Lemma 3.7. Let (an)n be an increasing sequence of positive integers.

Let ((m)= ({n ( an ( m}(. (Thus (0 = 0 and ((am) = m ). Thus the sequence (a(m))m is obviously non-decreasing and ((() = (. Let 

(3.1) ((x) = 
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(3.2) ( is non-decreasing and convex;

(3.3) 
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(3.4) If Y ( 0 is a random variable, then E((Y) ( 
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Proof of the Lemma. As the sequence (a(m))m is non-decreasing and non-negative, the function ((t):= 
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is also non-decreasing and non-negative. As ((x)=
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(t)dt , ( is clearly convex and no-decreasing. Then the function x ( 
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 (here m is an integer!) = limm((
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 = limm((((m) (by Stolz-Cesaro!) = (. We have proved the claims (3.2) and (3.3).

As about the last one, E((Y) = 
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The proof of the Lemma is complete. 

Continue with the proof of “(”.Let an ( ( be positive integers such that E((Xk(
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Well, the claim is that E((Y) ( 1.

Indeed, according to the previous Lemma, E((Y) ( 
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2-n = 1. Therefore we found a ( such that sup{E(((Xn() (n} ( 1. 

Proof of “(”. This the easy implication. Let ( > 0 arbitrary. We want to discover an t such that E(Y1{Y ( t}) ( ( if Y = (Xk( for any k. Let A be such that E(((Xk() ( A ( k and let  t > 0 be such that y ( t ( 
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. We can find such a t because of the property ((t)/t ( ( as t ( (, which we assumed. 

Let then Y be one of the random variables (Xk(. Then E(Y1{Y ( t}) ( E(
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Corollary 3.8. If a martingale X is bounded in Lp or in Lln+L then it is uniformly integrable. Bounded in Lln+L means that sup {E((Xn(ln+(Xn()} < (. In this case it has a tail.


Proof. We choose ((x) = xp , p > 1 or ((x) = xln+x . 


Remark. Example 4 points out that if X is not bounded in Lln+L then X  may not be uniform integrable. Indeed, if Xn = n
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,then E(Xnln+Xn) = lnn ( ( as n ( (. This martingale is not bounded in Lln+L.


Now we establish the connection between uniform integrability and the regularity of the stopping times. 


Proposition 3.8. If X is an uniformly integrable martingale, then every stopping time ( is regular. As a consequence ( ( ( ( E(X( (F() = X( for any stopping times. In particular EX( = EX1 for any (. 


Proof. 
 First remark that any uniform integrable martingale is bounded in L1 hence it has an almost sure limit X(​ which is also a L1-limit. Therefore X( makes sense even on the set (=(. So we can assume that Xn = E(f(Fn) for some f ( L1(F() (actually we can put f = X(!). Then X( = E(f (F() (indeed, E(f(F() = 
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Xn1{(=n} = X( ). We shall prove that the family {E(f(F()(( stopping time} is uniformly integrable. Let ( be increasing and convex such that E(((f() < (, ((t)/t ( ( if t ( ( (such a ( exists according to the Theorem of Vallee-Poussin: any finite set of random variables is uniformly integrable!)  Then ((E((f((F()) ( E((((f()(F() (Jensen!) ( E(((X(() = E((((E(f(F()()) ( E(((E((f((F())) (Jensen for x ( (x() ( E(E((((f()(F()) = E((((f()) < (. 


Therefore the family {E(f(F()(( stopping time} is uniformly integrable. But X((n ( X( a.s. According to Proposition 3.4 it must converge in L1, too; it means that ( is a regular stopping time. For the rest, see the previous lesson (stopping theorems). {E(f(F()(( stopping time} is uniformly integrable.(
4. Singular martingales. Exponential martingales.

A singular martingale is a nonnegative martingale, which converges to 0. 

We shall construct here a family of such kind of martingales.

Let ((n)n be a sequence of bounded i.i.d. random variables. Let Sn = (1+…+(n . The sequence ((n)n is called a random walk. If E(1=0, then Sn is a martingale.

Let L(t) = E
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be the Moment Generating Function of (1. (Notice that L(-t) is the Laplace transform of (1). As (1 is bounded, L makes sense for any t and is a convex function. Moreover, L(t) > 0 hence the function ((t) = ln(L(t)) makes sense , too. Notice also that L is indefinitely differentiable, since we can apply Lebesgue’s Theorem and

(4.1) L(n)(t) = E((1n
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We claim that the function ( is convex, too. Indeed, (”(t) = (L(t)L”(t)-(L’(t))2)/L2(t). We check that (” > 0 ( LL” > (L’)2 ( (E((1
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). To get the result, apply Schwartz’s inequality (Efg)2 ( Ef2Eg2 for f = (1
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, g = 
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. Moreover, the equality is possible only if f/g = constant a.s. ( (1 = constant. Meaning that if (1 is not a constant, then ( is strictly convex. 

Let now Xn = 
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( E(Xn+1(Fn) = XnE
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 (as (n+1 is independent on Fn !) = XnL(t)e-((t) (as (n+1 has the same distribution as (1!) = Xn (as e-((t) = e-ln(L(t)) = 1/L(t) !) . Thus X = (Xn)n is a positive martingale and EXn = 1.

Proposition 4.1. The martingale X is singular.

Proof. From the law of large numbers 
[image: image131.wmf]n

S

n

( E(1 ( tSn - n((t) = n(t
[image: image132.wmf]n

S

n

- ((t)) ( ( if tE(1> ((t) and ( - ( if tE(1 < ((t). The only problem is if tE(1 = ((t) ( tE(1 = ln(L(t)) ( L(t) = 
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. But Jensen’s inequality for the convex function x ( etx points out that E 
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 and, as this function is strictly convex, the equality may happen iff (1 is constant a.s., which we denied.

After all, the conclusion is that tSn - n((t) ( - (  ( Xn ( 0. (
Definition. Such kind of martingales are called exponential martingales. They are of some interest in studying random walks. 

Proposition 4.2. Let (a be the hitting moment of (a,() by S, a ( 0 . If E(1 (  0 and (1 ( L(, then (a is regular with respect to the martingale Xn = 
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 As a consequence, E
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Proof. This stopping time is finite a.s. by Corollary 2.7. It means that  X((n ( X( (a.s.). But notice that S((n ( a. Thus, if t > 0, Xn​ ( eta-n((t) ( eta (since ((t) = logE
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 (by Jensen!) = tE(1 (  0!) so we can apply Lebesgue’s domination criterion to infer that X((n ( X( in L1, too. (

There is a case when this fact is enough to find the distribution of (a. 


Suppose that (n ( 
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, p ( ½. This is the simplest random walk when the probability of a step to the right is p and the probability of a step to the left is q = 1 – p .  Suppose a is a positive integer. Then S( = a. As the above proposition tells us that E
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= 1 ( t ( 0 ( Ee-(((t) = e-at ( t ( 0. Let us denote ((t) by u ( 0. The function ((t) becomes in our case ((t) =ln(pet + qe-t ) = u hence

(4.2)
 pet+qe-t = eu. 


The idea is to find the positive t=((u) from the equation (4.1) in order to find the Laplace transform of ( ,

(4.3) L((u) = Ee-u( = e-a((u)
A bit of calculus points out that 

(4.4) t =((u) = ln
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which, replaced in (4.3) gives us

(4.5)
L((u) = (
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Remark that the Laplace transform is the a’th power of another Laplace transform, which means that ( is a convolution of a i.i.d random variables. That should not be very surprising, because in order to reach the level a the random walk S should reach successively the levels 1,2,…,a-1!

 If one expands (4.5) in series one discovers the moments of (. In order to find the distribution of ( it is more convenient to deal instead with the generating function g((x) = Ex(. We want x to be in [0,1]. We can do that replacing 
e-u by x (since u ( 0 ( 0 < x ( 1!) . Then we obtain

(4.5) g((x) = 
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Recall now the Mac Laurin expansion of 
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(4.6) 
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and replace in (4.5). One gets

(4.7) g((x) = 
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which gives the distribution of ( if one could effectively do the computations. For a = 1, anyway, the result is that

(4.8) P((1-1 = 
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 For p = q = ½ ,  P((1-1 = 
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Remark.  Notice that p > ½ ( E(a = 
[image: image157.wmf]1

2

2

-

p

ap

< ( but p = ½ ( E(a = ( . 

_1047100237.unknown

_1047213810.unknown

_1047226322.unknown

_1047273806.unknown

_1047718977.unknown

_1047723489.unknown

_1047724268.unknown

_1047724788.unknown

_1047724960.unknown

_1047725993.unknown

_1047724768.unknown

_1047723540.unknown

_1047723637.unknown

_1047723528.unknown

_1047722939.unknown

_1047723258.unknown

_1047722689.unknown

_1047717106.unknown

_1047718617.unknown

_1047718892.unknown

_1047718144.unknown

_1047274035.unknown

_1047717062.unknown

_1047273978.unknown

_1047228489.unknown

_1047273385.unknown

_1047273458.unknown

_1047273735.unknown

_1047273130.unknown

_1047273166.unknown

_1047273348.unknown

_1047272555.unknown

_1047226983.unknown

_1047228464.unknown

_1047226359.unknown

_1047215439.unknown

_1047225620.unknown

_1047226242.unknown

_1047226294.unknown

_1047226231.unknown

_1047225339.unknown

_1047225591.unknown

_1047225278.unknown

_1047214422.unknown

_1047215261.unknown

_1047215342.unknown

_1047215207.unknown

_1047214083.unknown

_1047214213.unknown

_1047214062.unknown

_1047116559.unknown

_1047212777.unknown

_1047213155.unknown

_1047213219.unknown

_1047213366.unknown

_1047213181.unknown

_1047213027.unknown

_1047213098.unknown

_1047212794.unknown

_1047117051.unknown

_1047212513.unknown

_1047212593.unknown

_1047189333.unknown

_1047191975.unknown

_1047116888.unknown

_1047117001.unknown

_1047116834.unknown

_1047113975.unknown

_1047115904.unknown

_1047116162.unknown

_1047116426.unknown

_1047116061.unknown

_1047115692.unknown

_1047115800.unknown

_1047115878.unknown

_1047115157.unknown

_1047115557.unknown

_1047101579.unknown

_1047102119.unknown

_1047102261.unknown

_1047101607.unknown

_1047100382.unknown

_1047101144.unknown

_1047100338.unknown

_1047057926.unknown

_1047098354.unknown

_1047099888.unknown

_1047100000.unknown

_1047100075.unknown

_1047099142.unknown

_1047099735.unknown

_1047099838.unknown

_1047099033.unknown

_1047098088.unknown

_1047098174.unknown

_1047097854.unknown

_1047056040.unknown

_1047057319.unknown

_1047057687.unknown

_1047056050.unknown

_1047034473.unknown

_1047054615.unknown

_1047054665.unknown

_1047034520.unknown

_1047034433.unknown

