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disintegration


Disintegration of the probabilities on product spaces

1. Regular conditioned distributions. Standard Borel Spaces

Let ((,K,P) be a probability space. Recall the following result from the lesson “Conditioning”:

Proposition 3.1.  If X  is a real random variable  (thus X : ((,K) (((,B(()) is measurable) then a regular version for P(X-1(((F ) exists for any sub-(-algebra F of K.


We are interested in replacing ((,B(()) with more general spaces: at least with (n instead of (.


So instead of being a real random variable, X is a measurable mapping from ((,K) to some measurable space (E,E) .


To begin with: what happens if E ( (? What is the meaning o “measurable”? 


Now the (-algebra on E is the trace of B(() on (. Meaning that A ( E  iff A = E(B for some Borel set B. 


Or, more formally, E  = i –1(B(()) where i : E ( ( is the so called cannonical embedding of E into (: simply i(x) = x ( x ( E. 


We can look of course at X as being real random variable. Formally, replace X with Y = i(X and clearly Y : ( ( (. 


Let F be a sub-(-algebra of K. Then we know that a regular version for P(Y-1(((F) exists. In other words there exists a transition probability Q from ((,F) to  ((,B(()) such that

(1.1)          P (Y ( B(F )(() = E(1B(Y)(F )(() = Q((,B) for almost all ( ( B ( B(()

What is wrong with this Q?

We would like to have a transition probability Q* from ((,F) to  (E,E) such that 

(1.2)          P (X ( A(F )(() = E(1A(X)(F )(() = Q((,A) for all A ( E and almost all ( ( (
If B1 and B2 are two Borel sets such that A = E(B1 = E(B2 (= i –1(B1) = i –1(B2)!)  then P(X-1(A)(F ) = P(X-1(i –1(B1))(F ) = P((i(X)-1(B1)(F ) = P(Y-1(B1)(F ) = Q((,B1) (a.s.) and 

P(X-1(A)(F ) = P(X-1(i –1(B2))(F ) = P((i(X)-1(B2)(F ) = P(Y-1(B2)(F ) = Q((,B2) (a.s.) hence 

(1.3)         E(B1 = E(B2 ( Q((,B1) = Q((,B2) (a.s.)

Seemingly, it makes sense to define 

(1.4)
         Q*((,A) = Q((,B ) if A = E(B 

This definition makes sense because of (1.3). 


The trouble is that we are not able to infer anymore that Q*((.() is a probability. For, if (An)n are disjoint we cannot infer that (Bn)n are disjoint, too!


There is a happy case.


Namely, if E is a Borel set itself.


For, in that case we could take B = A since in this happy case E  = {A ( E (A ( B(()}. Indeed, A (E  iff A = EB for some Borel set B. But EB is itself a Borel set. Meaning that  A (E iff A ( E and A is a Borel set.


Replacing i with some other function we arrive at the following result:


Proposition 1.1. Suppose that the measurable space (E,E) has the following property:

(1.4)            There exists a mapping i : E ( ( such that E = i –1(B(()) and i(E) ( B(()

Let X : ( ( E be measurable and F be a sub-(-algebra of K. Then X has a regular conditioned distribution with respect to F. Namely, if Q is a regular conditioned distribution of the real random variable Y := i(X  with respect to F, then

(1.5) Q*((,A) := Q((, i(A))

is a regular conditioned distribution of X with respect to the same (-algebra.


Proof. First we should check that (1.5) makes sense. Meaning, firstly, that A ( E ( i(A) ( B((). But A ( E ( ( B ( B(() such that A = i –1(B) . So i(A) = i(i –1(B)) = B(i(E) ( B(().

Next we should check that A ( Q*((,A) is a probability.

Let (An)n be a sequence of disjoint sets from E. We claim that the sets (i(An))n are disjoint, too. Indeed, An are of the form i –1(Bn) with Bn Borel sets. Replacing, if need may be, Bn with the new Borel sets Bn(i(E) we may assume that (Bn)n are disjoint as well. Then i(An) = i(i –1(Bn)) = Bn(i(E) = are disjoint. It follows that Q*((,
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*((,An). The measurability of ( ( Q*((,A) is no problem , so the only remained thing to check is that Q*((,A) = P(X ( A(F). But recall that A = i –1(B) for some Borel set B  hence Q*((,A) = Q((,i(A)) = P(i(X) ( i(A)(F)(() = P(i(X) ( i(i –1(B))(F)(() = P(i(X) ( B(i(E))(F)(() = P(X ( i –1(B(i(E))(F)(() = P(X ( i –1(B)(F)(() = P(X ( A(F) . (

A situation when Proposition 1.1 holds is if E is standard Borel.

Definition. A measurable space (E,E) is called Standard Borel if there exists an isomorphism between (E,E) and (B,B(B)) where B is a Borel set of (. An isomorphism is a mapping i : E ( B which is one to one, onto, measurable and A (E  ( i(A) ( B(B). In other words both i and i –1 are measurable. 


Corollary 1.2. If (E,E) is standard Borel, then any random variable X : ( ( E has a regular conditioned distribution with respect to any sub=(-algebra F of K . 


Proof. Let i be an isomorphism between (E,E) and (B,B(B)) .The only not that obvious thing is that E = i –1(B(()) . But A ( E  ( i(A) ( B(B) ( B(()) ( A ( i –1(B(B)) ( i –1(B(()) ( E  ( i –1(B(()). The other inclusion means simply that i is measurable. 


Example 1. Any Borel subset E of ( is standard Borel, but that is not big deal.


Example 2. E = (0,1)2 is standard Borel. 


This may be a bit surprising! Let p ( 2 be an counting basis (for instance p = 10 or p = 2). Then any x ( (0,1) can be written as x = 
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 where the digits dn(x) are integersa from 0 to p-1. Imposing the condition that any x of the form x = kp-n be written with a finite set of digits (that is denying the possibility of expansions of the form x = 0.c1…cnaaaa…. where a = p-1) this expansion is unique . Now consider the mapping i : (0,1)2 ( (0,1) defined by

 (1.6)
           i(x,y) =  
[image: image7.wmf]...
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(on the odd positions the digits of x and on the even ones the digits of y) this function is one to one and measurable (since all the functions dn are measurable) . It is true that i is not onto, because in Range(i) there are no numbers z of the form z = 0.ac2ac4ac6…. with a = p-1 since we denied that possibility. However, the function j : (0,1) ( (0,1]2 defined by 

(1.7)

j(z) =(
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has the obvious property that j(i(x,y)) = (x,y) ( x,y ( (0,1) and it is measurable. This fact ensures the measurability of i –1: B := Range(i) ( (0,1)2 because of the following equality  

(1.8)

(i –1)-1(C) = i(C) = j—1(C)(Range(i) 

Indeed, z ( i(C) ( z = i (u), u ( C ( j(z) =j(i(u)) = u ( C ( z ( j—1(C)(Range(i). Conversely, z ( j—1(C)(Range(i) ( j(z) ( C, z = i(u) for some u ( (0,1)2 ( j(i(u)) ( C ( u ( C, z = i(u) ( z ( i(C). So the only problem is to check that Range(i) is a Borel set. But that is easy: its complement is the set of all the numbers x with the property that, starting from some n on all the odd (even) positions there is the digit a = p-1 . Meaning that (0,1) \ Range(i) = 
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where On = {x((0,1)(dj(x) = p-1 ( j ( n, j odd} and En ={x ((0,1)(dj(x) = p-1 ( j ( n, j even }. And all these sets are Borel sets. For instance En = 
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x((0,1)(di (x)=a ( n ( i ( j, i even} is the intersection of a countable family of sets , all of them being finite union of intervals.


This phenomena is more general. Namely


Proposition 1.3. If (Ej,Ej) are Standard Borel spaces then (E1(E2, E1 (E2) is Standard Borel, too. 


Proof. Let Bj , j=1,2 be Borel sets on the line isomorphic with Bj . Let fj : Ej ( Bj the isomorphisms. Then f = (f1,f2) : E1(E2 ( B1(B2 is an isomorphism, too. Let then i be the cannonical embedding of B1(B2 into (2, h :(2 ( (0,1)2 be an isomorphism (for instance h(x,y) = (h(x),h(y)) with h(x) = e-x/(1+e-x), the logistic usual function) and ( : (0,1)2 ( Range(() be the isomorphism from Example 2. The composition ( := ((h(i(f is then an isomorphism from E1(E2 to Range((). (
2. 
The disintegration of a probability on a product of two spaces

Let (Ej,Ej) be measurable spaces. Let X = (X1,X2) : ( ( E1(E2 be measurable. 


Proposition 2.1. Suppose that the second space (E2,E2) is Standard Borel. Let ( = P(X1-1 and let Q  be a transition probability from E1 to E2 such that P(X2 ( B2 (X1)(() = Q(X1((),B2) (a.s.) for all B2 ( E2. Then P(X –1 = ((Q . Or, to serve as a thumb rule

(2.1) P((X1,X2)-1 = P(X 1–1((P(X2-1(X1) (the regular version)

Proof.  Recall from the lesson “Conditioning” that ((Q is the probability measure on the product space with the property that

(2.2)
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d((Q = 
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(x,y)Q(x,dy)d((x) 

Recall also that P(X2 ( B2 (X1) means actually P(X2 ( B2 (F) where F = ((X1) := X1-1(E1). Then X2 has a regular conditioned distribution of the form P(X2 ( B2 (F) = Q*((,B2) where Q* is a transition probability from ((,((X1)) to (E2,E2)  because of Corollary 1.2. The fact that Q* is of the form Q*((,B) = Q(X1((),B) for some other transition probability Q comes from the universality property studied at the lesson “Conditioning”. 


Now all we have to do is to check that the equality

(2.3)

 Ef(X) = 
[image: image13.wmf]ò

f
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holds for every measurable bounded f. 

Step 1.
Let f be of the special form  f(x,y) = f1(X)f2(y). Then Ef(X) = E(f1(X1)f2(X2)) = E(E(f1(X1)f2(X2)(X1)) (by Property 3 from “Conditioning”) = E(f1(X1)E(f2(X2)(X1)) (by Property 9) = E(f1(X1)
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(y)Q(X1,dy)) (this is the transport formula, Proposition 3.2 from “conditioning”) = 
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(y)Q(x,dy)))dP(X1-1() (now this is the usual transport formula) = 
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(y)Q(x,dy)))d((x) = 
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1(x)f2(y)Q(x,dy)d((x) = 
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So our claim holds in this case. 

Step 2. Let f = 1C , C ( E1(E2. We want to check (2.3) in this case.

Let C = {C ( E1(E2((2.3) holds for f = 1C}. According to the first step, C contains all the rectangles C = B1(B2 , Bj ( Ej. On the other hand, C is a (-system (You check that, it is easy!) hence C contains the (-system generated by the rectangles. Well, this is exactly E1(E2, because the intersection of two rectangles is a rectangle itself.

Step 3. f = 
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Step 4. f  ( 0. Apply Beppo-Levi. 

Step 5. f = f+ - f- (

Corollary 2.2. The disintegration theorem. Let (Ej,Ej) be measurable spaces. Let P be a probability on the product space (E1(E2, E1 (E2). Suppose that the second space (E2,E2) is Standard Borel. Then P disintegrates as P = ((Q where ( is a probability on E1 and Q is a transition probability from E1 to E2. 


Proof. Consider the probability space (E1(E2, E1 (E2, P) and the random variables X1 = pr1 (the projection on E1) , X2 = pr2 (the projection on E2). Then P = P(X​ –1 . Apply Proposition 2.1. (

Corollary 2.3. Special cases. Let (Ej,Ej) be Standard Borel spaces. Let P be a probability on the product space (E1(E2, E1 (E2). Then P disintegrates as P = ((Q where ( is a probability on E1 and Q is a transition probability from E1 to E2. 


As a consequence any probability in plane disintegrates .

3. 
The disintegration of a probability on a product of n spaces

Let now n standard Borel spaces (Ej,Ej)1(j ( n and  let X = (Xj)1 ( j ( n  be a random vector X : ( ( E , where E is the product space E = E1(E2(…(En endowed with the product (-algebra E=E1(E2(…(En. . Then E is standard Borel itself, according to Proposition 1.3 (induction!) . It we think at E as being the product of the two spaces E1(E2(…(En-1 and En and apply Proposition 2.1, we may write

(3.1)

P(X –1 = P((X1,…,Xn-1)-1(Qn-1
where Qn-1 is a transition probability from E1(E2(…(En-1 to En which characterizes the conditioned distribution of Xn given (X1,…,Xn-1). Precisely

(3.2)

P(Xn ( Bn (X1,X2,…,Xn-1) = Qn-1(X1,…,Xn-1;Bn) (a.s.) ( Bn ( En
So we have, applying (2.1) the equality

(3.3)

P(X –1 = P((X1,…,Xn-1)-1(P(Xn-1(((X1,…,Xn-1)

Repeating this thing we get the “thumb rule”

(3.4)
            P(X –1 = P(X1-1(P(X2-1(((X1)(…(P(Xn-1(((X1,…,Xn-1)

where one takes the regular versions for the conditioned distributions.

If we denote by Qi these conditioned distributions (the precise meaning is: Qi(X1,…,Xi;Bi+1) = P(Xi+1 ( Bi+1 (X1,X2,…,Xi) (a.s) , i = 1,2,…,n-1 ) and we denote be ( the distribution of X1, then one can write the not very precise relation (3.4) as

(3.5) P(X-1 = ((Q1(…(Qn-1
This product is to be understood as being computed in the prescribed order. We have no associativity rule yet. 

If all the spaces are discrete (meaning that Ej are at most countable and Ej= P(Ej) – an obvious standard Borel space) then (3.4) says nothing more that the well known “multiplication rule”

(3.6)
P(X1=x1,…, Xn=xn) = P(X1=x1)P(X2=x2(X1=x1)…P(Xn=xn(X1=x1,…,Xn-1=xn-1)

(of course, if the right member has sense) and (3.5) says the same thing using transition probabilities 

(3.7)
P(X1=x1,…, Xn=xn) = p(x1)q1(x1;x2)q2(x1,x2;x3)…qn-1(x1,x2,…,xn-1;xn)

where p(x1) = (({x1}) and qi(x1,x2,…,xi;xi+1) = Qi(x1,x2,…,xi;{xi+1}) = P(Xi+1=xi+1(X1=x1,…,Xi=xi).


We want to define the associativity of the product (3.5). To do that, the first step is to define the precise meaning of Q1(Q2. 


So, now n = 3. We can look at the product E1(E2(E3 as being in fact E1((E2(E3). 


If we apply Proposition 2.1 for the standard Borel space E2(E3 and Proposition 2.1 from the lesson “Transition probabilities” we obtain

(3.8)              P(X –1 = ((Q ( Ef(X) = 
[image: image28.wmf]òò
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f

x,y,z)Q(x,d(y,z))d((x) if f is measurable, bounded

where Q is a transition probability from E1 to E2(E3 with the property that 

(3.9)
             P((X2,X3)(C(X1) = Q(X1,C) (a.s.) ( C ( E2(E3
Comparing (3.8) to (3.5) written as

(3.10)
 
P(X –1 = (((Q1)(Q2   ( Ef(X) = 
[image: image29.wmf]òòò

f

(x,y,z)Q2(x,y;dz)Q1(x;dy)d((x) (same f)

which should hold for any ( ((x included)  we see that we may define Q, the product of Q1 with Q2 by the relation

(3.11)

Q1(Q2(x,C) = 
[image: image30.wmf]òò

C

1

(y,z)Q2(x,y;dz)Q1(x,dy)

This product makes sense for any transition probabilities Q1 from E1 to E2 and Q2 from E1(E2 to E3. The result is a transition probability from E1 to E2(E3. 

An elementary calculus points out that Q1(Q2 is indeed a probability on E2(E3 since Q1(Q2(x;E2(E3) = 
[image: image31.wmf]òò
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(y,z)Q2(x,y;dz)Q1(x,dy) = 
[image: image32.wmf]òò

1

Q2(x,y;dz)Q1(x,dy) = 1

Example. In the discrete case (3.11) becomes

(3.12)

Q1(Q2(x;y,z) = q1(x;y)q2(x,y;z)


We arrived at the following result:


Proposition 3.1. The associativity. If ( is a probability on E1, Q1 is a transition probability from E1 to E2 and Q2 is a transition probability from E1(E2 to E3 then

(3.13)

(((Q1)(Q2 = (((Q1(Q2)

where the product Q1(Q2 is defined by (3.11).

Moreover, if Q3 is another transition probability from E1(E2(E3 to E4 then 

(3.14)

(Q1(Q2)(Q3 = Q1((Q2(Q3)

Proof. As (3.13) was already proven ( the very definition of the product ensures the first associativity) we shall prove (3.15). This should be a transition probability from E1 to E2(E3(E4. Let f: E2(E3(E4 ( ( be measurable and bounded and let Q = Q1(Q2. This is a transition probability from E1 to E2(E3 . So 
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d[(Q1(Q2)(Q3](x)= 
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d[Q(Q3](x) = 
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(y,z)Q3(x,y;dz)Q(x,dy) (according to the very definition ! . Notice that here x ( E1, y ( E2(E3 and z ( E4)  = 
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(y1,y2,z)Q3(x,y1,y2;dz)[Q1(Q2](x,dy) = 
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(y1,y2,z)Q3(x,y1,y2;dz)Q2(x,y1,dy2)Q1(x,dy1). On the other hand, let Q* = Q2(Q3 . This is a transition probability from E1(E2 to E3(E4. Therefore 
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d[Q1((Q2(Q3)](x)= 
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d[Q1(Q*](x) = 
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f

(y,z)Q*(x,y;dz)Q1(x,dy) (here x ( E1, y ( E2, z ( E3(E4) 

=
[image: image41.wmf]òòò

f

(y,z1,z2)Q3(x,y,z1;dz2)Q2(x,y,dz1)Q1(x,dy).

It is the same integral. With more natural notations both of them can be written as

(3.15)
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d[Q1(Q2(Q3](x1) =
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(x2,x3,x4)Q3(x1,x2,x3;dx4)Q2(x1,x2,dx3)Q1(x1,dx2). (

As in the lesson about transition probabilities, we can define the “usual” product between Q1 and Q2 by
(3.16)
Q1Q2(x,B3) := Q1(Q2(x,E2(B3) = 
[image: image44.wmf]òò
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1

B

(z)Q2(x,y;dz)Q1(x,dy) =
[image: image45.wmf]ò

Q

2(x,y;B3)Q1(x,dy)

This is transition probability from E1 to E3. 


Proposition 3.2. The usual product is associative, too. 


Namely the following equalities hold:

(3.17) ((Q1)Q2 = ((Q1Q2)

(3.18) (Q1Q2)Q3 = Q1(Q2Q3 

Proof. [((Q1)Q2](B3)  = [((Q1)(Q2](E2(B3) = 
[image: image46.wmf]ò
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Q

(x2,B3)d(Q1(x2) = 
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Q

(x2,B3)Q1(x1,dx2)d((x1) and [((Q1Q2](B3) = [(((Q1Q2)](E1(B3) = 
[image: image48.wmf]ò

2

1

Q

Q

(x1,B3)d((x1) and, applying (3.16) ane sees that the result is the same.

As about (3.18), the proof is the same: [(Q1Q2)Q3](x,B4) = [(Q1Q2)(Q3](x,E3(B4) = Q1(Q2(Q3 (x,E2(E3(B4) and [Q1(Q2Q3)](x,B4) = [Q1((Q2Q3)](x,E2(B4) = Q1(Q2(Q3 (x,E2(E3(B4). (
Here is the meaning of the usual product :


Proposition 3.3. Using the above notations

(3.19)

P(X3 ( B3(X1) = Q1Q2(X1,B3)
and P(X3-1 = (Q1Q2
Proof. Using (3.9) one gets P(X3 ( B3(X1) = P((X2,X3)(E2(B3(X1) = Q(X1,E2(B3) = Q1(Q2(X1,E2(B3) = Q1Q2(X1,B3). Using the transport formula we see that the equality

(3.20)

 E(f(X3)(X1) = 
[image: image49.wmf]ò

f

dQ1Q2(X1) := 
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f

(z) Q2(X1,y;dz)Q1(X1,dy) 

should hold for any bounded measurable f : E3 ( (. Then E(f(X3)) = E(E(f(X3)(X1)) = E(
[image: image51.wmf]ò

f

dQ1Q2(X1)) = 
[image: image52.wmf]òòò

f

(z) Q2(X1,y;dz)Q1(X1,dy)dP = 
[image: image53.wmf]òòò

f

(z) Q2(x1,y;dz)Q1(x1,dy)d((x1). As this equality holds for indicator functions one gets 

P(X3 ( B3) = E
[image: image54.wmf]3
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(X3) = 
[image: image55.wmf]òò

Q

2(x1,y;B3)Q1(x1,dy)d((x1) = ((Q1Q2)(B3) = ((Q1Q2)(B3) – by  associativity. 

(
Example. In the discrete case one gets Q1Q2(x,{z}) = 
[image: image56.wmf]å
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Here are two generalizations of the above discussions:

Proposition 3.4. Let f : E1(…(En(En+1 ( ( be bounded and measurable. Then 

(3.21)
E(f(X1,….,Xn+1)(X1,…,Xn)  = 
[image: image57.wmf]ò
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X

X

f

Qn(X1,…,Xn; dxn+1) = (Qnf)(X1,..,Xn)

Proof. Step 1. f(x1,x2,…xn+1) = f1(x1)…fn(xn)fn+1(xn+1). Then E(f(X1,….,Xn+1)(X1,…,Xn) = f1(X1)…fn(Xn)E(fn+1(Xn+1)( X1,…,Xn) = f1(X1)…fn(Xn)
[image: image58.wmf]ò
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Qn(X1,…,Xn; dxn+1) = 
[image: image59.wmf]ò
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x

X

X

f

Qn(X1,…,Xn; dxn+1); so (3.21) holds. Step 2. f = 1C , C ( E1(…(En . The set of those C for which (3.21) holds is a (-system which contains the rectangles B1(…(Bn ; Step 3. f  is simple. Etc. (
Proposition  3.5. Let (En,En)n ( 1 be a sequence of Standard Borel Spaces and  let X = (Xn)n ( 1  be a sequence of random variables Xn : ( ( En  . Let ( = P(X1-1 . Then there exist a sequence of transition probabilities from E1(E2(…(En  to En+1 , denoted with Qn such that 

(3.22)

P((X1,X2,…,X​n)-1 = ((Q1(Q2(…(Qn-1

According to Proposition 3.1 (the associativity) the right hand term from (3.20) is well-defined. Moreover, 

(3.23)

P(Xn​-1 = (Q1Q2…Qn-1
and

(3.24)

 P(Xn+k ( Bn+k(X1,X2,.. Xn) = (QnQn+1…Qn+k-1)(X1,…,Xn;Bn+k)
Proof. Induction. The only subtlety is in (3.24). For k = 1 P(Xn+1 ( Bn+1(X1,X2,.. Xn) = Qn(X1,X2,…,Xn; Bn+1) by the very definition of Qn . For k = 2 P(Xn+2 ( Bn+2(X1,X2,.. Xn) = E(
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(Bn+2) (X1,X2,.. Xn) = E(E(
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X

(Bn+2) (X1,X2,.. Xn,Xn+1)(X1,X2,.. Xn) = E(Qn+1(X1,…,Xn+1;Bn+2) (X1,X2,.. Xn) = 
[image: image62.wmf]ò

+

1

n

Q

(X1,…,Xn,xn+1)Qn(X1,…,Xn;dxn+1) = (QnQn+1)(X1,…,Xn;Bn+k) hence (3.24) holds in this case, too. Apply Proposition 3.4 many times. (
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