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Martingales


Martingales

1.
Simple properties

Definitions. Let ((,K,P) be a probability space. A filtration is any increasing sequence of sub-(-algebras of K. We shall denote it by (F n)n(1 . Usually one adds to the filtration its tail (-field, that is the (-algebra F ( defined by F( =((
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 Fn). Let X:= (Xn)n be a sequence of random variables. We call X adapted if Xn is ​ Fn-measurable for any positive integer n. The system ((,K,P, (F n)n) is called  a stochastic basis. 

Example. If we define Fn := ((X1,X2,…,Xn) , then X is clearly adapted. This filtration is called the natural filtration given by X. 

Definitions. Let X be an adapted sequence. Suppose that Xn ( L1 for any n. Then X is called

· A supermartingale if E(Xn+1( Fn) ( Xn  ( n;

· A martingale if E(Xn+1( Fn) = Xn  ( n;

· A submartingale if E(Xn+1( Fn) ( Xn  ( n;

· A semimartingale if X is either supermartingale or martingale or submartingale.

Remark. If one does not define the filtration, it is understood that he has in mind the natural filtration. Also notice that a martingale is both a sub- and a super- martingale and conversely, if X is both sub- and super- martingale, it is a martingale. 

Remark. In the literature the concept of semimartingale is slightly different. However, we shall use it only in this sense.

Examples. 

1. Let (n be a sequence of i.i.d. r.v. from L1 and let a = E(1. Let Fn = (((1,(2,…,(n) and Xn = (1 + (2 +…+(n .  Then a ( 0 ( X is a supermartingale, a = 0 ( X is a martingale and a ( 0 ( X is a submartingale.  If we think at (n as being the gain of a player at the n’th game, then Xn is the gain of the player ofter n games. So we can understand a supermartingale or a martingale as the gain in an unfair game and the martingale as the gain in a fair game. Supermartingale = the game is unfavorable to the player and submartingale = game favorable to the player. 

Proof. E(Xn+1(Fn) = E(Xn+(n+1(Fn) = E(Xn(Fn) + E((n+1(Fn) = Xn + E((n+1(Fn) (as Xn is Fn -measurable) = Xn + E(n+1 (as Xn is independent on Fn ) ( E(Xn+1(Fn) = Xn + a . (
2. Let (n be a sequence of non-negative i.i.d. r.v. from L1 and let a = E(1. Let Fn = (((1,(2,…,(n) and Xn = (1(2 … (n .  Then a ( 1 ( X is a supermartingale, a = 1 ( X is a martingale and a ( 1 ( X is a submartingale.

Proof. Similar. E(Xn+1(Fn) = E(Xn(n+1(Fn) = XnE((n+1(Fn) (as Xn is Fn -measurable) = XnE(n+1 (as Xn is independent on Fn ) ( E(Xn+1(Fn) = aXn .(
3. Let (Fn)n be a filtration and f ( L1. Let Xn = E(f(Fn). Then Xn is a martingale. The random variable X( = E(f(F() is called the tail of X . Martingales of this form are called martingales with tail.

Proof. E(Xn+1(Fn) = E(E(f(Fn+1)(Fn) = E(f(Fn) (as Fn ( Fn+1) = Xn.(
4. A concrete example. Let ( = (0,1], K = B ((0,1]), P = the Lebesgue measure and  Xn = 
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. Check that this is a non-negative martingale converging to 0 a.s. but not in L1. 

5. Another concrete example. Let (n be i.i.d with the distribution ((-1+(1)/2. Let Fn = (((1,…,(n). Let Bn ( Fn be such that P(Bn) ( 0 as n ( ( but P(limsup Bn) = 1. Define the sequence Xn by recurrence as follows: X1=(1 and Xn+1 = Xn(1+(n+1)+(n+1
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for n ( 1. Then Xn converges in probability to 0 but P(limsupXn = liminfXn) = 0. That is, Xn diverges almost surely.

Proof. Remark that (n+1(() = -1 and ((Bn ( Xn+1(()=0 hence Xn+1(() ( 0 ( (n+1(() = 1,Xn(() ( 0 or ( ( Bn. That is, {Xn+1 ( 0} ( {(n+1 = 1,Xn ( 0} ( Bn ( P({Xn+1 ( 0}) ( P( {(n+1 = 1,Xn(0} ( Bn) ( P((n+1= 1, Xn ( 0) + P(Bn) = P(Xn ( 0)P((n+1=1) + P(Bn) = P(Xn (  0)/2 + P(Bn). 

Let pn = P(Xn(0) and qn = P(Bn). So pn+1 ( pn/2 + qn ( n and qn ( 0. Aplying the recurrence many times we see that pn+1 ( 2-1pn + qn ( 2-2pn-1+ 2-1qn-1  + qn  ( 2-3pn-2 + 2-2qn-2 + 2-1qn-1 + qn  ( ..( 2-np1 +2n-1(q1 + 2q2 + …+ 2n-1qn). As 2-np1 ( 0 and , by Cesaro-Stolz 
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 = 2limiqn = 0 it means that P(Xn ( 0) ( 0. Now suppose that Xn(() ( a for some a ( (. Then Xn+1(() – Xn(() ( 0 . But from the recurrence relation we infere that Xn+1 – Xn = (n+1(Xn + 
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). So, if ( Xn+1 – Xn (= (Xn + 
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( (as ((n( = 1) converges to 0, then (Xn(() + 
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(()( ( 0, too , which is the same with the claim that Xn(() + 
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(() ( 0 , meaning that 
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(() has a limit. But we know that P(liminf Bn) ( lim P(Bn) = 0 and P(limsup Bn) = 1 , i.e. the sequence 
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diverges a.s. . Therefore P( Xn converges to a finite limit) = 0. Suppose that Xn(() ( (. That will imply the fact that Xn(() > 0 for any n great enough. But P(Xn+k > 0 ( k) ( P(Xn+j(0) ( j and that converges to 0. Meaning that P(limXn = ( or -() = 0. We inferr that Xn diverges a.s.

The fact that Xn is a martingale is obvious, since E(Xn+1(Fn) = XnE(1+(n+1(Fn)+ 
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E((n+1(Fn) (as Xn is Fn – measurable  and Bn ( Fn ) = Xn E(1+(n+1) + 
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E((n+1) = Xn (as E(​n+1 = 0) . On the other hand remark that  E((Xn+1((Fn) = (Xn(E((1+(n+1() + 
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E(((n+1() = (Xn( + 
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 ( (Xn ( points out that (Xn( is a submartingale with the property that E(Xn(= 1+
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Here are some simple properties of these sequences.


Property 1. 1. If X is a submartingale, the sequence (EXn)n is non-decreasing; If X is a martingale, the sequence (EXn)n is constant and if X is a supermartingale, the sequence (EXn)n is non-increasing. Moreover, if m < n then E(Xn(Fm) ( Xm (for supermartingales), = Xm (for martingales) and ( Xm for submartingales. 


The proof is simple and left as an exercise.(
Property 1.2.  If X,Y are martingales (sub-, super-) and a,b ( 0 , then aX+bY is the same. That is the sub (super) martingales form a positive cone. Moreover, if X,Y are martingales , then aX+bY is a martingale ( a,b , meaning that the set of all the martingales of some stochastic basis is a vector space. Moreover, X is supermartingale ( -X is a submartingale.

The proof is obvious and left to the reader.

Property 1.3. If X is a martingale and f is a convex function such that f(Xn) ( L1 ( n, then the sequence Yn = f(Xn) is a submartingale. If f is concave and f(Xn) ( L1 ( n, , then the sequence Yn = f(Xn) is a supermartingale. As a consequence, if X is a martingale, then ((Xn()n, ((Xn)+)n, Xn2 is are submartingales.

Proof. It is Jensen’s inequality for conditioned expectations.Suppose f is convex. Then E(Yn+1(Fn) = E(f(Xn+1)(Fn) ( f(E(Xn+1(Fn)) = f(Xn) = Yn . (

Property 1.4. The Doob-Meyer decomposition. The submartingales are actually sums between martingales and increasing sequences. Any submartingale X can be written as X = M + A  where M is a martingale and A is nondecreasing (An ( An+1 a.s.) and predictable (i.e. An+1 is Fn – measurable) . 

Proof. Let us define the sequence An by the following recurrence: A1 = 0 , A2 = E(X2( F1) – X1 , A3 = A2 + E(X3( F2) – X2 , …., An+1 = An + E(Xn+1(Fn)  - Xn . As X is a submartingale, A is indeed non-decreasing. By the definition, An+1 is Fn- measurable. Let Mn = Xn – An . As Mn+1 = Mn + Xn+1 – E(Xn+1(Fn)  it follows that Mn is indeed a martingale.(

Property 1.5. Martingale transforms. Let X = (Xn)n(1 and B = (Bn)n(0 be adapted sequences of r.v. such that Bn(Xn+1 – Xn) ( L1 (that happens for instance if Bn ( L(  and Xn ( L1 ( n). Remark that, unless X, B starts from 0. We shall agree that B0 is a constant in order to be measurable with respect to any (-algebra.  Let us define a new sequence denoted by B(X  by the recurrence (B(X)1 = B0X1 and, for n ( 1,   (B(X)n+1 = (B(X)n + Bn(Xn+1-Xn) .( Or, directly, (B(X)n =X1 + B1(X2 – X1) + B2(X3 – X2) + …+ Bn-1(Xn – Xn-1) for n ( 2). Call the sequence B(X the transform of X by B.  Then

(i)
If X is a   martingale, B(X is a martingale, too;

(ii).       If X is a submartingale and Bn ( 0, (n, then B(X is a submartingale, too; if Bn ( 0,( n, B(X is a supermartingale.

(iii). 
If Bn = c is a constant sequence, ( ( L((F1), then B(X = cX.

Proof. E((B(X)n+1(Fn)  = E((B(X)n + Bn(Xn+1-Xn)(Fn)  = (B(X)n + BnE(Xn+1-Xn)(Fn)  . (
2. Stopping times

In the theory of martingales the concept of stopping time is crucial.

Definitions. Let ((,K,P, (F n)n) be a stochastic basis. A random variable (: ( ( N ( {(} is called a stopping time iff {(=n} ( F n ( n. If ( is a stopping time one denotes by F( the family of sets A ( K  with the property that A ( {( = n } ( F n ( n . Remark that F( is a new (-algebra called the (-field of the events happenned before ( (the anterior (-algebra). Let now X be a sequence of random variables. Let ( ( L1(F() arbitrary. We define X( by the relation

(2.1) X((() = 
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Remark that, while there exists an ambiguity in the definition of X( on the set ( = (, if ( < ( there is no imprecision.

Property 2.1. Examples of stopping times and properties of F(.

(i).
 Any constant is a stopping time.

(ii).
 If ( = k = constant, then F ( = F k , meaning that the definition of F( is natural.

(iii).
 If X is adapted and B ( B((), then (B defined as (B= inf {n(Xn ( B} is a stopping time. (We adopt the convention that inf ( = () . This stopping time is called the hitting time of B.

(iv).
If ( is a stopping time and A ( F( then (A is again stopping time where (A = (1A + (1( \ A .

(v).
If ( and ( are stopping times and ( ( ( , then F( ( F(.

(vi)
A ( F( ( A({(((} ( F(, A({(=(} ( F( ( F(
(vii)
{(((} ( F( ( F(, {( = (} ( F( ( F(
(viii)
F( ( F( = F((( , ((F( ( F() = F((( 

Proof. (i) and (ii) are obvious. For (iii) remark that {(B = n} = {X1(B , X2(B , … , Xn-1(B,Xn(B} ( F n since X is adapted.

(iv)
 It is easy: {(A = n } = {( = n } ( A ( F n due to the definition of F(.

(v).
It is also immediate: A(F( ( A({( = k}(Fk so A ( {( = n} = 
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( {( = n} (with Bk​ = A({(=k} ( Fk ( Fn  ) ( Fn . (vi).
 Let A ( F(. To prove that A({(((} ( F( we have to check that A({(((}({(=n} ( Fn ( n. But A({(((}({(=n} = A({(( n}({(=n} belongs to Fn since A ( F( ( A({(( n} ( Fn and ( is a stopping time ( {( = n} ( Fn . As about the set A({(=(}, it belongs both to F( (as A({(=(}({(=n} = (A({( = n})({( = n} ) and to  F( (as A({( = (}({( = n} = (A({( = n})({( = n} ).

(vii).
 That {(((} ( F( is an easy consequence of (vi) (just set A = () . To check that {(((} ( F( , let n be arbitrary. Then {(((}({( = n } = {(=n}({((n} = {(=n} \ {(=n}({(<n} ( Fn as {(=n} ( Fn and {( < n } ( Fn . Thus {(((} ( F( ( F(. As about {( = (}, it is even easier: {( = (} ( {( = n } = {( = (} ( {( = n } = {( = n} ( {( = n }  ( Fn .

(viii).
 As ((( is a stopping time and (((  ( ( , ((( ( ( , it follows that  F((( ( F( ( F( . Conversely, if A ( F( ( F( , then A ({((( ( n) = (A({( ( n}) ((A({ ( ( n} ) ( Fn hence A ( F(((. As both ( ( ((( and ( ( (((,   F( ( F( ( F((( ( (( F( ( F() ( F(((. Conversely, A ( F((( ( A = (A({(((=(})((A({(((=(}). The first set is in F( and the second one in F( hence their union is in ((F( ( F().  (
Property 2.2 If X is adapted, then X( is F( – measurable.

Proof. Let B be a Borel subset of (. Then X(-1(B) = {((X((() ( B} = 
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. We have to check that X(-1(B) ( F( , meaning that X(-1(B)({(=n} ( Fn ( n . But the above computation show that X(-1(B)({(=n} = Xn-1(B)({(=n} ; as Xn is Fn – measurable , Xn-1(B) ( Fn hence, by the very definition of a stopping time {(=n}( Fn ( X(-1(B)({(=n} ( Fn for finite n. If n = (, it is the same.(
Property 2.3.  A formula to compute E(f ( F(). The following equality holds. If f ( L1 then

(2.2) E(f(F () = 
[image: image23.wmf]å

¥

=

1

E

n

(f(Fn) 1{(=n} + E(f(F() 1{(=(}
Proof. Let Y be the left term from (2.2). By the same reasoning as before, Y is  F (-measurable. Let A ( F (. The task is to prove that E(f1A) = E(Y1A). But E(Y1A) = E(
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(f(Fn) 1{(=n}1A + E(f(F() 1{(=(}1A) = E(
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(f(Fn) 1{(=n}(A + E(f(F() 1{(=(}(A) = E(
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(E(f 1{(=n}(A (Fn)) + E(E(f1{(=(}(A (F())  =
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(f 1{(=n}(A) + E(f1{(=(}(A )  = E(f1((<()(A) + E(f1((=()(A) = E(f1A)  . Notice that we have commuted the sum with the expectation due to Lebesgue dominated convergence theorem. Indeed, if gn = 
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 ((f ( 1{(=k}(A (Fk) (Jensen’s inequality for the convex function s ( (s(!) ( g where  g = 
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(E((f (1((=n)( Fn)) (by Beppo-Levi!) = 
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((f (1((=n)) = E((f ( 1((<()) (again by Beppo-Levi!) ( E((f() < (. (
Property 2.4. A stopped martingale (sub-(, super-() is again a martingale (sub-(, super-() . Precisely, if ( is a stopping time and X is a sequence of random variables, the sequence Y defined by

(2.3)
Yn = Xn((
is called the stopped of X at (. 

The claim is that by stopping a martingale(submartingale, supermartingale) one gets another martingale (submartingale, supermartingale) with respect to the same filtration. 

Proof. Let ( be a stopping time and Bn = 1{( > n} = 1{n < (} for n ( 1 and B0 = 1 . Due to the definition of a stopping time, B is an adapted sequence.  Let X be an adapted sequence. Then (B(X)n = Xn((. Indeed, if ((() = n , n ( 2, then Bk(() = 1 if k < n and = 0 if k ( n . Let  k ( n. Then (B(X)k (()=(B1X1 + B1(X2 – X1) + B2(X3 – X2) + …+ Bk-1(Xk – Xk-1))(() = (X1 + (X2 – X1) + (X3 – X2) + …+ (Xk – Xk-1))(() = Xk(() . If k > n, then (B(X)k(() = (X1 + B1(X2 – X1) + B2(X3 – X2) + …+ Bn-1(Xn – Xn-1) + Bn(Xn+1-Xn) + …+ Bk-1(Xk – Xk-1))(()= (X1 +(X2 – X1)+(X3 – X2)+ …+ (Xn – Xn-1) + 0((Xn+1-Xn) + …+ 0((Xk – Xk-1))(()   = Xn(() .  If n = 1, then (B(X)1 = B0X1 = X1 = X((1 holds in this case, too.  So this property is a consequence of Property 1.5. (

Property 2.5. Optionalization. If (, ( are bounded stopping times and ( ( ( then 

(2.4) E(X((F() ( X( if X is a supermartingale

(2.5) E(X((F() = X( if X is a martingale and

(2.6) E(X((F() ( X( if X is a submartingale

Proof.  Let A ( F( . Consider the stopping times (A and (A defined in Property 2.1 (iv). Let Bn = 1{( ( n < (}(A =
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.Suppose that X is a supermartingale. Then, 

(2.7) (B(X)n = (Xn(( - Xn(()1A  

is again a supermartingale, according to Property 2.4. It means that 

(2.8) E((B(X)n) ( E((B(X)1) = E(B0X1) = 0 

since B0 = 0. We assumed that ( and ( are bounded. Let n ( (((. From (2.7) we see that (B(X)n = (X( - X()1A and (2.8) implies that 

(2.9) E((X( - X()1A) ( 0 ( A ( F(. 

Let Y = E(X( - X((F(). By the definition of the conditioned expectation, E((X( - X()1A) = E(Y1A) ( A ( F(. But Y is itself  F(-measurable hence from (2.9) Y ( 0. Meaning that E(X( - X((F() ( 0 which further implies E(X(F() – E(X((F() ( 0 ( E(X((F() ( X( as by property 2.2 we know that X( is F( - measurable. Notice that as ( is finite, we do not need an extra random variable ( to define X(. We have proved the inequality (2.4). The proof holds also for (2.5) and (2.6) changing the hypothesis that X is a supermartingale with “martingale” and “submartingale”.


Corollary 2.6. Let ((n)n(1 be an increasing sequence of bounded stopping times. Let Yn = 
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. Suppose that X is a supermartingale (martingale, submartingale) Then Y is a supermartingale (martingale, submartingale)  too,  with respect to the new filtration (Gn)n(1 


Corollary 2.7.  Let X be a supermartingale (martingale, submartingale) and ( be a bounded stopping time. Then EX1 ( EX( (EX1 = EX( , EX1 ( EX() .


Proof. Of course, since ( ( 1. Apply Property 2.5 with (=1.(

Counterexample. If ( is finite but not bounded, that may not be true. For example if X is the martingale from example 4. Let An = 
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 . Then F1 is trivial and for n ( 2, Fn is the (-algebra generated by the sets A1,….,A​n-1. Let ( = 
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. As An ( Fn+1 , ( is a stopping time and X( = 0. Therefore it is not true that EX( = EX1.


But sometimes it is true.


Definition. Let ( be a finite stopping time. Then ( is called regular if X((n ( X( in L1 is n ( (.


Corollary. 2.8. Suppose that (, ( are regular stopping times and ( ( (. 

Then the assertions (2.4)-(2.6) still hold.


Proof. We shall prove only (2.4), the other two assertions have the same proof. Of course X((n ( L1 (since ║X((n║1 ( 
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) and, as ║X(-X((n║1 ( 0 , it means that X( is in L1, too. The same holds for X(. But we know that E(X((n(F((n) ( X((n for any n. Recalling the definition of the conditioned expectation, that means that E(X((n1A) ( E(X((n1A) ( A ( F((n, n fixed. As F((n ( F(((n+k) for k ( 0 , it follows that E(X(((n+k)1A) ( E(X(((n+k)1A) ( A ( F((n, n fixed for any k ( 1. Letting k ( ( and keeping in mind that fn ( f in L1 ( E(fn1A) ( E(f1A) ( A it follows that E(X(1A) ( E(X(1A) ( A ( F((n , n fixed. Let A =
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 F((n . Then A  is an algebra of sets from  F( and ((A ) = F( (since A (  F( ( A =
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A({((n} and the sets A({((n} belong both to F( (from Property 2.1(vi) ) and to Fn ( A({((n} ( F( ( Fn = F((n ). Moreover, we checked that  E(X(1A) ( E(X(1A) ( A ( A ( E(X(1A) ( E(X(1A) ( A (((A) ( E(X(1A) ( E(X(1A) ( A ( F( which, of course is the same as the claim (2.4).(

We shall give some sufficient conditions to ensure the regularity of a stopping time.


For the semimartingales of the form 

(2.10) Xn = (1 + (2 +…+ (n , where ((n)n are i.i.d. from L1  

there is a simple condition. 


Proposition 2.9. The Wald condition. Any stopping time ( with finite expectation E( is regular for the semimartingale defined by (2.10). As a consequence, if E(1=0, then EX( = 0.


Proof. We shall prove that E(X( - X((n(( 0. But E(X( - X((n(= E((Xn+1-Xn)1{(=n+1} + (Xn+2-Xn)1{(=n+2} + …( = ( E((n+11{(=n+1} + ((n+1+(n+2)1{(=n+2} + ((n+1+(n+2 + (n+3)1{(=n+3} + …( = E((n+11{(>n} + (n+21{(>n+1} + (n+31{(>n+2} + …( ( 
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Now E(((n+k+1(1{(>n+k}) = E(E(((n+k+1(1{(>n+k}( Fn+k))  = E(E(((n+k+1(Fn+k) 1{(>n+k})  (since ( is a stopping-time!) = E(E(((n+k+1() 1{(>n+k})  (as (n+k+1 is independent on Fn+k) = aP((>n+k) with a = E((1( (as (n are identically distributed) . Therefore E(X( - X((n( ( 
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aP(( > n+k) = 0. Therefore ( is regular. (

Corollary 2.10. Wald’s identities. Let X be defined by (2.10) and ( be a stopping time such that E( < (. Then 

(2.11) EX​( = E(1E(
And, if (n ( L2, then

(2.12)
E((X( - (a)2) = (E()Var((1)

Proof. Let a = E(1. Then Yn = Xn – na is a martingale (of course , with respect to its natural filtration!). As ( is regular, EY( = 0 ( E(X( - n() = 0 proving (2.11). For the second assertion, let (2 = Var((1) and Zn = Yn2-n(2. Then Z is a martingale. Indeed, E(Zn+1(Fn) = E(Yn2 + 2((n+1-a)Yn + ((n+1-a)2 - n(2-(2( Fn) = Zn +  E(2((n+1-a)Yn + ((n+1-a)2 -(2( Fn) = Zn +  2YnE((n+1-a) ( Fn) +E( ((n+1-a)2 ( Fn) - (2 = Zn +  2YnE((n+1-a)  +E((n+1-a)2 - (2  (since (n+1 is independent on Fn!) = Zn (as E((n+1-a)2 = (2 !) . Moreover, EZn = 0. If we could prove that ( is regular, then EZ( = 0 ( E((X( - (a)2 - (Var((1) ) = 0 which is exactly (2.12).

It means that the task is to prove that ( is regular for Z.

The trick is to prove that Yn(( ( Y( in L2 as n ( (. If so, that would imply the convergence in L1 of Y2n(( to Y2( by Holder’s inequality (notice that ║f2-g2║1 = E((f-g(((f+g() ( ║f-g║2(║f+g║2). Let (n = (n – a . Notice that now E(n = 0.  Then ║ Yn(( - Y(║22 = E(Yn(( - Y()2 = E((n+11{(=n+1} + ((n+1+(n+2) 1{(=n+2} +  ((n+1+(n+2+(n+3) 1{(=n+3} + ….)2 = E((n+11{(>n} + (n+2 1{(>n+1} +  (n+3 1{(>n+2} + ….)2 . Let yj=(j1{( > j-1}  considered in the Hilbert space L2 and Sn = y1 + y2 + …+ yn. 

Notice that i ( j ( yi(yj .

( Indeed, if , say, i < j then <yi,yj> = E((​i(j1{( > i – 1}1{( > j-1}) = E((​i(j1{( > j-1}) = E(E((​i(j1{( > j-1}(Fj-1)) = E((​i 1{( > j-1}E((j(Fj-1)) (as (i and 1{( > j-1} are Fj-1- measurable) = E((​i 1{( > j-1}E(j) (as (j is independent on Fj-1) = 0. )

On the other hand the sequence Sn = 
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is convergent in the Hilbert space L2  to some limit y, because it is Cauchy and L2 is complete: ║Sn+k –Sn ║22 = ║yn+1║22 + … + ║yn+k║22 (due to orthogonality) = (2(P((>n)) + P((>n+1) +… + P(( > n+k-1))  (║ym║22 = E((m21{(>m-1}) =E(E((m21{(>m-1}( Fm-1)) = E(1{(>m-1}E((m2( Fm-1)) = E(1{(>m-1}E((m2)) = (2P(( > m-1) !! ) ( (2
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After all, the conclusion is that ║ Yn(( - Y(║22 = ║y – Sn║22 ( 0 as n ( (. 

Meaning that Yn((2 ( Y(2 in L1 ( Yn((2 – (n(()(2 ( Y(2 – ((2 in L1 ( Zn(( ( Z( in L1. So ( is regular for Z. (
Remark. In statistics one uses Wald’s inequalities in a slightly different case: ( is a “counting” variable which is independent on (’s. We can see that case as a particular one of ours as follows: let us extend the natural filtration with the (-algebra generated by (. So Fn = (((1,(2,…,(n,(). Then X remains a semimartingale with respect to the new filtration because E(Xn+1(Fn) = E(Xn+(n+1(Fn) = Xn + E((n+1(Fn)  and (n+1 is independent on Fn (the associativity of the independence: if F1 (here (((1,…,(n)) , F2 (here ((()) and F3 (here (((n+1)) are independent, then (( F1 ( F2) is independent on F3 . 

Remark. One should not believe that automatically any stopping time with finite expectation is regular. For instance, if Xn = n2 (this is a submartingale!) and ( is such that E(<( but E(2 = (, then X( = (2 is not even in L1, in the spite of the fact that Xn , being constants are in L1. So Xn(( cannot converge in L1!

3.
An application: the ruin problem.


There are two players, “A” and “B” playing a game . The first one has a capital of a euro , the second one b euro (a,b positive integers). If “A” wins, he gains 1 euro; if “B” wins, he loses 1 euro. They decide to play the game until the ruin, i.e. until one of them loses all his money. Let ( be the ruin time, that is the number of games after which the game stops. We want to find the probability that “A” wins and the expectation of (. 


Suppose that the probability that “A” wins is p. Let q be the probability of a draw and r the probability that B wins. To avoid  trivialities we accept that p,r ( 0. Let (n the gain of A at the n’th game. So (n (
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 . Thus

(3.1)
 ( : = E(1 = p-r 

and , as E(12 = p+r 

(3.2) (2 := Var((1) = p+r-(p-r)2 = p(1-p) + r(1-r) + 2pr. 

We accept that the (’s are independent. Let Xn = (1+…+(n . This is the gain of the first player after playing n games. 


The game stops the first time when Xn = b (in this case B is ruined) or Xn = -a​ (now A has lost all his money). So ( = inf {n ( Xn = b or Xn = - a }. 

Let (Fn)n​ be the natural filtration.


Remark first that (< ( a.s. That is, P(-a​ < Xn < b for any n ) = 0. 


Indeed,  if ( ( 0 the law of the large numbers says that Sn/n ( ( a.s. ( Sn/n ( ( in probability.  So P(n((-() ( Sn ( n((+()) ( 1 as n ( ( for any ( > 0. We infer that Sn ( ( if ( > 0 and Sn ( - ( if ( < 0. In both cases P(-a​ < Xn < b for any n ) = 0.

If ( = 0, the Central Limit Theorem asserts that 
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 ( N(0,1) in distribution. Therefore P(-a​ < Xn < b for any n ) ( P(-a​ < Xn < b ) = P(
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< () (for n great enough) ( N(0,1)((-(,()) for any (>0. As the normal distribution is absolutely continuous, the quantity N(0,1)((-(,()) can be made arbitrarily small. So P(( = () = P(-a​ < Xn < b for any n ) = 0 in this case, too.

Why E( < (?

There  exists a direct proof, but it is pretty sophisticated. Here is an indirect one. 

Let Yn = Xn – na.  Then (Yn)n is a martingale and EYn = 0. Then  E(Y((n ) = 0 since any bounded stopping time (in our case ((n) is regular. It means that E(Xn(() = (E(((n) ( n.  But the right hand term converges to E(, by Beppo-Levi . The left hand one is bounded between –a and b, since –a ( X((n ( b hence the limit EX( = E(a.s. – lim Xn(() = (E( ( ((. 

The trick holds if ( ( 0. 

If ( = 0, (this happens if p = r!) let us consider the martingale Zn = Xn2 - n(2 . It has also null expectation: EZn = 0. Meaning that E(Xn((2) = (2E(((n). The argument is the same, because the sequence (Xn((2)n is bounded between 0 and a2(b2 . Then the result is

(3.3)
E( = EX(2/(2

Let us consider first the case ( ( 0. We know that

(3.4) E( = (EX()/(. = (EX()/(p-r)

The only problem is to compute EX(. Notice that X( = b1A –a1B where A is the event “A wins” and B means “B wins”. Thus 

(3.5)
EX( = bP(A) – aP(B). 

Let us consider the new sequence Un = 
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(Fn) (as 
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[image: image62.wmf]1

+

x

n

t

) (since  
[image: image63.wmf]1

+

x

n

t

is independent on Fn ) = Un(pt+q+rt -1). Choose t(1 such that pt+q+rt –1 = 1 ( pt+r/t = p+r  ( t = r/p. Then Un is a martingale and EUn = 1 ( EU((n = 1 by Corollary 2.7. Therefore E
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= 1 for any n . As Xn(( ( X( a.s. and the sequence is bounded , the sequence (
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)n is bounded, too and converges a.s. to U(. By Lebesgue’s domination principle, U((n converges in L1 to U( , hence EU( = limn(( EU((n = 1. But EU( = tbP(A) + t-aP(B) = 1 ( P(A)(tb-t-a) = 1 – t-a . Therefore we find

(3.6)
P(“A” wins) = 
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which, replaced in (3.5) and (3.4) gives us the possibility to compute E(.


In the case (=0 we have p=r. . Now Xn is a martingale itself hence EX( = 0 , as ( is regular. Replacing in (3.5) we see that 

(3.7) P(A) = P(“A” wins) = 
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Which implies that EX(2 = b2
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 = ab which, replaced in (3.3) gives us E(=ab/(2 or

(3.8)
E( = 
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Notice that if there are no draws, E(=ab, the win-probabilities do not change. 
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