The Normal Distribution

1. One-dimensional normal distribution

Let us recall some elementary facts.

Definition. Let X be a real random variable. We say that X is normally standard distributed if P(X-1 = (0,1((  where ( is the Lebesgue measure on the real line and (0,1(x) = 
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. We denote that by “X ( N(0,1). The distribution function of N(0,1) is denoted by (. Thus

(1.1) ((x) =P(X ( x)  = N(0,1)((-(,x]) = 
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There exists no explicit formula for (, but it can be computed numerically. Due to the symmetry of the density (0,1, it is easy to see that ((-x) = 1 - ((x) ( ((0)=0.5 , therefore for any x > 0 we get  ((x) = 0.5 + 
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and the last integral can be easily approximated by Simpson’s formula, for instance.

The characteristic function of a standard normal r.v. X is (X(t) = EeitX := (N(0,1)(t)= 
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, its expectation is EX = -i(X’(0)= 0 , its second order moment is EX2 = - (X”(0) = 1, hence the variance V(X) = EX2 – (EX)2 = 1. That’s why one also reads N(0,1) as “the normal distribution with expectation 0 and variance 1”

Let now Y ( N(0,1) , (>0 and (( (. Let X = (Y + (. Then the distribution function of X is FX(x)= P (X ( x) = P(Y ( 
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 (X(x) = F’X(x) = 
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. We denote this density with
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and the distribution of X with N((,(2). Due to obvious reasons  we read this distribution as “the normal with expectation ( and dispersion (”. Its characteristic function is

(1.2)
 (X(t) = EeitX = Eeit((+(Y) = eit(Eeit(Y = 
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2. Multidimensional normal distribution

Let X : ( ( (n be a random vector. The components of X will be denoted by Xj, 1 ( j ( n. The vector will be considered a column one. Its transposed will be denoted by X’. So, if t ( (n is a column vector, t’ will be a row one with the same components. With these notations the scalar product <s,t> becomes s’t. The euclidian norm of t will be denoted by (t(. Thus (t( = 
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We say that X ( Lp if all the components Xj ( Lp , 1 ( p ( (.

The expectation EX is the vector (EXj)1(j(n. This vector has the following optimality property 

Proposition 2.1. Let us consider the function f:(n ( ( given by 

(2.1)
f(t) = ║X – t ║22 : = 
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Then f(t) ( f(EX). In other words EX is the best constant which approximates X if the optimum criterion is L2. 

Proof. We see that f(t) = 
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The analog of the variance is the matrix C = Cov(X) with the entries ci,j = Cov(Xi,Xj) where

(2.2) Cov(Xi,Xj) = EXiXj - EXiEXj
The reason is

Proposition 2.2. Let X be a random vector from L2, C be its covariation matrix and t ( (n. Then 

(2.3)      Var(t’X) = t’Ct

Proof. Var(t’X) =E(t’X)2 – (E(t’X))2 = 
[image: image22.wmf]å
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Remark. 2.1. Any covariance matrix C is symmetrical and non-negatively defined , since according to (2.3) , t’Ct ( 0 ( t ( (n. We shall see that for any non-negatively defined matrix C there exists a random vector X having C as covariance matrix. 

Remark. 2.2.  We know that, if X is a random variable, then Var(( + (X) = (2Var(X). The n – dimensional analog is 

(2.3) Cov((+AX) = A(Cov(X)(A’
Indeed, Cov((+AX) = Cov(AX) (the constants don’t matter) and (Cov(AX))i,j =E((AX)i(AX)j) - E((AX)i)E((AX)j) = E((
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(E(XrXs) - E(Xr)E( Xs)) = 
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(Cov(X))r,s = A(Cov(X)(A’. (

Now we are in position to define the normal distributed vectors.

Definition. Let X1,…,Xn be i.i.d. and standard normal. Then we say that X ( N(0,In). Here 0 is the vector 0 ( (n.

Remark that X ( N(0,In) ( P(X-1 = 
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((0,1(()  = ((0,1((0,1(…((0,1) ( (n  hence the density (X is 
(2.4)
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The characteristic function of N(0,In) is 

(2.5)
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Remark.2.3 Due to the unicity theorem for the characteristic functions, (2.5) may be considered an alternative definition of N(0,In) : X ( N(0,In)  ( (X(t) = 
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Let now Y ( N(0,Ik) and A be a n(k matrix . Let ( ( (n. Consider the vector

(2.6) X = ( + AY
Its expectation is ( and, applying (2.3)  its covariance C= C(X) = A(Cov(Y)(A’ = AA’ (since clearly Cov(Y) = In ).

Its characteristic function is (X(t) = Eeit’X = Eeit’((+AY) = eit’(Ee-it’AY = eit’(Ee-i(A’t)’Y = eit’((Y(A’t) = ei t’(
[image: image39.wmf]2

'

2

t

A

e

-

= ei t’(
[image: image40.wmf]2

'

)'

'

(

t

A

t

A

e

×

-

= ei t’(
[image: image41.wmf]2

'

'

t

AA

t

e

-

= 
[image: image42.wmf]2

'

t

C

t

it

e

-

m

.

The first interesting fact is that (X depends on C, rather than on A. The second one is that C can be any non-negative n(n defined matrix. Indeed, as one knows from the linear algebra, any nod-negative defined matrix C can be written as C = ODO’ where O is an orthogonal matrix and D a diagonal one , with all the elements dj,j non-negative. Let A = O(O’ with ( the diagonal matrix with (j,j = 
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. Then (2 = D hence  AA’ = O(O’ (O(O’) = O((O’O)(O’ = O((O’ = ODO’ = C . That is why the following definition makes sense:

Definition. Let X be an n-dimensional random vector. We say that X is normally distributed with expectation ( and covariance C (and denote that by X ( N((,C) !) if its characteristic function is 

(2.7)
(X(t) = (N((,C)(t) = 
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Remark 2.4. Due to the above considerations, an equivalent definition would be : X ( N((,C) iff X can be written as X= ( + AY for some n(k matrix A such that C = AA’ and with Y ( N(0,Ik).


Not always a normal vector is absolutely continuous. But if det( C ) > 0, this indeed the case: it has a density.

Proposition 2.3. Suppose that the covariance C = Cov(X) is invertible and X ( N((,C). Then X has the density

(2.8) ((,C(x) =(det(C)(-1/2
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Proof. Let A be such that X =( +  AY , C = AA’. We choose A to be square and invertible. Then det( C ) =det(AA’) = det(A)det(A’) =  det2(A). Let f : (n ( ( be measurable and bounded. Then Ef(X) = Ef((+AY) = 
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 EMBED Equation.3  [image: image50.wmf]2
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d(n(y) Let us make the bijective change of variable x = (+Ay  ( y = A​-1(x-(). Then , computing the Jacobian 
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 one sees that  d(n(x) = (det(A)(( d(n(y). It means that 

Ef(X)    
= 
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=(det(C)(-1/2
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3. Properties of the normal distribution

Property 3.1. Invariance with respect to affine transformations. If X is normally distributed then a + AX is normally distributed, too. Precisely, if X is n-dimensional, A is a m ( n matrix and a ( (m, then

(3.1) X ( N((,C) ( a + AX ( N(a+A(, ACA’)

Proof. Let Y ( N(0,Ik) and B be a n( k matrix such that BB’ = C and X = ( + BY. It means that Z = a + AX = a + A((+BY) = a + A( + ABY . By Remark 2.4, Z (N(a+A(, AB(AB)’) and AB(AB)’ = ABB’A’ = ACA’.(
Corollary 3.2. 

(i).    X ( N((,C), t ( (n    ( t’X ( N(t’(,t’C t). Any linear combination of the components of a  normal random vector is also normal.
(ii).   X ( N((,C), 1 ( j ( n ( Xj ( N((j,cj,j). The components of a normal random vector are also  normal .
(iii).  Let X ( N((,C) and ((Sn be a permutation. Let X(() be defined as (X(())j = X((j). Then X(() is also normally distributed. By permutting the components of a random vector we get another random vector.
(iv).   Let X ( N((,C) and J ( {1,2,…,n} . Let XJ the vector with (J( components obtained from X by deleting the components j ( J. The XJ ( N((J,CJ​) where (J is the vector obtained from ( by deleting the components j ( J and CJ is the matrix obtained from C by deleting the entries ci,j with (i,j) ( J(J. Deleting components of a random normal vector preserves the normality.  

Proof. All these facts are simple consequences of (3.1): (i) is the case m =1, a=0; (ii) is a particular case of (i) for t = ej = (0,…0,1,0,..,0) (here “1” is on the j’th position); (iii) is the particular case when  A=A( is a permutation matrix, namely ai,j = 0 iff i ( ((j) and  ai,j = 1 iff i = ((j). Finally, (iv) is the particular case when A is a deleting matrix, namely a (J(( n matrix defined as follows: suppose that (J(=k and that J ={j(1)<j(2)<…<j(k)}. Then a1,j(1) = a1,j(1) = … = ak,j(k) = 1 and ar,s = 0 elsewhere. The reader is invited to check the details. (

It is interesting that (i) has a converse.

Property 3. 2. Let X be a n-dimensional random vector. Suppose that t’X is normal for any t ( (n. Then X is normal itself. If any linear combination of the components of a normal vector is normal, then the vector is normal itself.

Proof. If t = ej then t’X =Xj. According to our assumptions, Xj is normal ( 1(j(n. It follows that Xj ( L2 ( j ( X ( L2 ( XiXj ( L1 ( i,j . Let ( = EX and C = Cov(X). Then Et’X = t’EX = t’( and Var(t’X) = t’Ct (by 2.3). It follows that t’X ( N(t’(, t’Ct). By (1.2) its characteristic function is (t’X(s) =Eeis(t’X) = 
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. Replacing s with 1 we get (t’X(1) =Eei(t’X) =(X(t)= 
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. But acoording to (2.7), this is the characteristic function of a normal distribution. (
Maybe the most important property is

Property 3.3. In a normal random vector non-correlation implies independence. The precise setting is the following: let X be a n-dimensional random vector. Let J ( {1,2,…,n}. Suppose that i(J, j ( Jc ( Xi and Xj are not correlated, i.e. r(Xi,Xj) = 0. Then XJ is independent of 
[image: image68.wmf]c

J

X

.

Proof. Due to (iii). from Corollary 3.2 we may assume that J = {1,2,…,k} hence Jc = {k+1,…,n}. If i( J , j ( J then Cov(Xi,X​j) = r(Xi,Xj)((Xi)((Xj) = 0 . Let Y = XJ and Z = 
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. We can write then X =(Y,Z)’ . From (iv)., Corollary 3.2, we know that Y and Z are normally distributed: the first one is Y ( N((J, CJ) and Z ( N((K, CK) with K = Jc.  Moreover, as i( J , j ( K ( Cov(Xi,X​j) = 0 it follows that C = 
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. Let t ( (n. Write t = (tJ,tK)’. It is easy to see that t’Ct = tJ’CJ tJ + tK’ CK tK . From (2.7) it follows  that (X(t) = 
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. Thus ((Y,Z)(tJ,tK) = (Y(tJ)(Z(tK) or , otherwise written ((Y,Z) = (Y((Z. The unicity theorem says that if two distributions have the same characteristic function, they must coincide. It means that P((Y,Z)-1 = (P(Y-1)( (P(Z-1)  ( Y and Z are independent. (
Property 3.4. Convolution of normal distributions is normal. Precisely

X1 ( N((1,C1), X2 ( N((2,C2), X1 independent of X2 ( X1 + X2 ( N((1+(2,C1+C2)

(Here it is understood that X and Y have the same dimension!)

Proof. It is easy. According to (2.7) 
[image: image74.wmf]1

X

j

(t) = 
[image: image75.wmf]2

'

1

1

t

C

t

it

e

-

m

, 
[image: image76.wmf]2

X

j

(t) = 
[image: image77.wmf]2

'

2

2

t

C

t

it

e

-

m

. It follows  
[image: image78.wmf]2

1

X

X

+

j

(t) = 
[image: image79.wmf]1

X

j

(t) 
[image: image80.wmf]2

X

j

(t) = 
[image: image81.wmf]2

'

1

1

t

C

t

it

e

-

m



 EMBED Equation.3  [image: image82.wmf]2

'

1

1

t

C

t

it

e

-

m

= 
[image: image83.wmf]2

)

(

'

)

(

2

1

2

1

t

C

C

t

it

e

+

-

m

+

m

.(
Corollary 3.5. 
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Proof. Let us firstly suppose that Xj ( N(0,1). Let us consider the matrix A=
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. The reader is invited to check that A is orthogonal, that is, that AA’ = In . Let X = (Xj)1(j(n and Y = AX. By (3.1), Y ( N(0,AInA’) = N(0,In). Thus Yj are all independent , according to property 3.3. So, Y1, Y22, Y32, ..,Yn2 are independent, too. But Y1 = 
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= (n-1)s . It follows that 
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is independent on (n-1)s hence the assertion of the corollary is proven in this case. 

In the general case Xj = ( + (Yj with Yj independent and standard normal. Then 
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and sn(X) = (2sn(Y). We know that 
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 is independent on sn(Y) , therefore f(
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) is independent on g(sn(Y)) for any functions f and g. As a consequence 
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is independent on sn(X) .( 
4. Conditioning inside normal distribution

Let X = (Y,Z)  be a m + n dimensional normal distributed vector. Thus Y =(Yj)1(j(m and Z = (Zj)1(j(n . We intend to prove that the regular conditioned distribution (see lesson Conditioning, 3) P(Y​​​​​​​​​-1(((Z) is also normal.

First suppose that EX = 0. Let H be the Hilbert space spanned in L2 by (Zj)1(j(n. Recall that the scalar product  is defined by <U,V>  = EUV. Thus

(4.1) H = {
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Let U ( L2. We shall denote the orthogonal projection of U onto H by U*. Hence 

(i).
U* = 
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(ii).
U – U* ( Zj ( 1 ( j ( n

We shall suppose that all the variables Zj are linear independent (viewed as vectors in the Hilbert space L2), i.e. the equality 
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= 0  holds iff (=0. In that case U* can be computed as follows: write (ii). as <U-U*,Zj > = 0 ( 1 ( j ( n . Replacing U* from (i). , we get the following system of n equations with n unknowns (1,…,(n (the so called normal equations)

(4.2) 
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The matrix G =(<Zj,Zk>)1(j,k(n is called the Gramm matrix. Remark that this matrix is invertible since if t ( (n then t’Gt = 
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║22 ( 0 and, as Zj were supposed to be independent,  the equality is possible iff t = 0. Thus the matrix G is positively defined hence invertible; therefore (4.2) has the unique solution (=G-1b(U) with b(U) = (<U,Zk>)1(k(n . Therefore the projection U* is U* = (’Z = (G-1(b(U))’Z = b(U)’G -1(Z (G = G’!).(
Proposition 4.1. Suppose that all the variables Zj are linear independent. Then the conditioned distribution P(Y​​​​​​​​​-1(((Z) is also normal. Precisely

(4.3) P(Y​​​​​​​​​-1(((Z) = N(Y*,C)

where  Y* is the vector (Y*j)1(j(m = (b(Yj)’G -1(Z)1(j(m and ci,j = Cov(Yi-Y*i,Yj-Y*j​) = <Yi-Y*i,Yj-Y*j​>.

Proof. We shall compute the conditioned characteristic function (Y(Z(s) = E(eis’Y(Z). Let us consider the vector (Y-Y*,Z). It is normally distributed, too, because it is of the form AX for some matrix A. As Cov(Yj - Y*j, Zk) = E(Zk(Yj-Y*j)) = < Zk ,Yj-Y*j > = 0 ( 1(j(m, 1(k(n,  Property 3.3 says that Y – Y* is independent on Z. Therefore

 E(eis’Y(Z) = E(eis’(Y-Y*)+is’Y*(Z) = E(eis’(Y-Y*)e is’Y*(Z) = eisY* E(eis’(Y-Y*)(Z) (by Property 11, lesson Conditioning ) = eisY* E(eis’(Y-Y*)) (by Property 9, lesson Conditioning ). Now Y-Y* is normally distributed by Corollary 3.2(iv) and its expectation is E(Y-Y*)=0. Then (Y-Y*(s)= 
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where C is the covariance matrix of Y-Y*. We discovered that (Y(Z(s) = 
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. For every ((( this is the characteristic function of N(Y*((),C). (
Remark. As a consequence, the regression function E(Y(Z) coincides with Y*. Indeed, by the transport formula 3.5 , lesson Conditioning, E(Y(Z) is the integral with respect to P(Y​​​​​​​​​-1(((Z), i.e. with respect to N(Y*,C). And that is exactly Y*. It follows that the regression function is linear in Z. Remark also that the conditioned covariance matrix C does not depend on Z. 

The restriction that all the Zj be linear independent is not serious and may be removed.

Corollary 4.2. If X =(Y,Z) is normally distributed, then the regular conditioned distribution P(Y​​​​​​​​​-1(((Z) is also normal. 

Proof.  Let k be the dimension of H. Choose k r.v.’s  among the Zj’s which form a basis in H. Denote them by {
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}.  Then the other Zj are linear combinations of these k random variables, thus the (-algebra ((Z) is generated only by them. Let Z0 be the vector   
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. It follows that P(Y​​​​​​​​​-1(((Z) = P(Y​​​​​​​​​-1(((Z0) and this is normal. (
Now we shall remove the assumption that EX = 0. 

Corollary 4.3.  If X = (Y,Z) ( N((,C) then P(Y​​​​​​​​​-1(((Z) is normal, too.

Proof. Let us center the vector X. Namely, let X0 = X - (, Y0 = Y – (Y  and Z0 = Z – (Z where (Y = EY and (Z = EZ . Then Z = Z0 + (Z and Y = Y0 + (Y . From Proposition 4.1. we already know that P((Y0) ​​​​​​​​​-1(((Z0) = N(Y0*,C0) where Y0* is the projection of Y onto H and C0 is some correlation matrix. But ((Z) = ((Z0) therefore P((Y0) ​​​​​​​​​-1(((Z) = N(Y0*,C0). It means that P(((Y + Y0 ) ​​​​​​​​​-1(((Z) = N((Y+ Y0*,C0).(
Maybe it is illuminating to study the case n=2. Let us first begin with the case EX = 0. The covariance matrix is C = 
[image: image121.wmf]÷

ø

ö

ç

è

æ

2

,

2

1

,

2

2

.

1

1

,

1

c

c

c

c

 with ci,j = EXiXj . Then c1,1 = EX12 = (12, c1,2 = c2,1 = r(1(2 where r is the correlation coefficient between X1 and X2 (r = 
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) and c2,2 = EX22 = (22. Remark that Xj ( N(0,(j2) j = 1,2; and,  det( C )  = det 
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 = (12(22(1-r2) and the inverse C –1 =
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 . Then  the characteristic function is  (X(s) = 
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and from (2.8) the density is

(4.4)
 (0,C(x) =(det(C)(-1/2
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In this case the projection of X1 onto H is very simple : X1* = aX2 with a chosen such that <X1-aX2,X2> = 0 ( r(1(2 = a(22 ( a = 
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. The covariance matrix from (4.3) becomes a positive number Var(X1 – X1*) = E(X1 – X1*)2 = (12 – 2ar(1(2 + a2(22 = (12(1-r2) thus

(4.5) P((X1)-1(((X2) = N(
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In the same way we see that

(4.6) P((X2)-1(((X1) = N(
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If EX = ((1,(2)’ then, taking into account that Xj and Xj-(j generate the same (-algebra, the formulae 4.4-4.6 become 

(4.7) (0,C(x)  = 
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(4.8) P((X1)-1(((X2) = N((1+
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(4.9) P((X2)-1(((X1) = N((2+
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5. The multidimensional central limit theorem

The uni-dimensional central limit theorem states that if (Xn)n is a sequence of i.i.d. random variables from L2 with EX1 = a and ((X1) = (, then sn:=
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 converges in distribution to N(0,(2). The multi-dimensional analog is

Theorem 5.1. Let (Xn)n be a sequence of i.i.d random k-dimensional vectors . Let a = EX1 and C = Cov(X1). Then

(5.1) sn :=
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Proof. We shall apply the convergence theorem for characteristic functions. Let Yn = Xn - a,  let ( be the characteristic function of Y1 and (n be the characteristic function of sn. Thus ((t) = E
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. We shall prove that (n(t) ( (N(0,C)(t). 

Let Z n = t’Yn . Then the random variables Zn are i.i.d., from L2 , EZn = t’EYn = 0 and Var(Zn) = t’Ct. Using the usual CLT , 
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 converges in distribution to N(0, t’Ct). Let (n the characteristic function of 
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. It is easy to see that (n(1) = (n(t). But (n (1) ( (N(0,t’Ct)(1) = 
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= (N(0,C)(t) hence (n(t) ( (N(0,C)(t).(
Corollary 5.2. Let X , Y be two i.i.d. random vectors from L2 with the property that P(X-1 = P(
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Proof. If X and 
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 have the same distribution, then EX = E
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EX hence EX = 0. Now let Xn a sequence of i.i.d. random vectors having the same distribution as X. It is easy to prove by induction that 
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has the same distribution as X. (Indeed, for n = 1 it is our very assumption. Suppose it holds for n, check it for n+1. So 
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are i.i.d. and both have the distribution of X. Then 
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 converges in distribution to N(0,C) where C = Cov(X). As the distribution of sn does not change, being P(X-1 it means that P(X​-1 = N(0,C).(
Another intrinsic characterization of the normal distribution is the following:

Proposition 5.3. Let X and Y be two i.i.d. random vectors. Suppose that X+Y and X-Y are again i.i.d. Then X ( N(0,C) for some covariance matrix C = Cov(X). 

Proof. Let k be the dimension of X. Let t ( (k . Then t’X and t’Y are again i.i.d. As X+Y and X-Y are i.i.d, it follows that t’X + t’Y and t’X – t’Y  are i.i.d. 

That’s why we shall prove first our claim in the unidimensional case. That is, now k = 1.

Let ( be the characteristic function of X. As X+Y and X-Y are i.i.d, it follows that (X+Y,X-Y(s,t) = (X+Y(s)(X-Y(t) ( Eeis(X+Y)+it(X-Y) = Eeis(X+Y) Eit(X-Y) ( EeiX(s+t)+iY(s-t) = EeisX EeisY EitXEe –itY which is the same with

(5.2) ((s+t)((s-t) = (2(s)((t)((-t) ( s,t.  ( (
On the other hand, X+Y and X-Y have the same distribution. It means that they have the same characteristic function. As (X+Y(t) = (X(t)(Y(t) = (2(t) and (X-Y(t) = (X(t)(Y(-t) = ((t)((-t) we infer that ((t) = ((-t) = 
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 ( t ( ( . It follows that ((t) ( ( ( t hence (5.2) becomes

(5.3) ((s+t)((s-t) = (2(s)(2(t)  ( s,t ( (
If s = t (5.3) becomes ((2s)((0) = (4(s) ( s (  ((2s) = (4(s) ( s ( ((2s) ( 0 ( s ( ((s) ( 0 ( s ( (. Thus ( is non-negative and ((t) = ((-t) ( t. 

 Let h = log( . Then (5.3) becomes

(5.4) h(s+t) + h(s-t) = 2(h(s)+h(t)) ( s,t ( (
If in (5.4) we let t = 0, we get 2h(s) = 2(h(s) + h(0)) ( h(0) = 0.

If in (5.4) we let s = 0, we get h(t) + h(-t)  = 2(h(t) + h(0)) = 2h(t) ( h(t) = h(-t).

Finally, replacing h with kh , we see that (5.4) remains the same. That’s why we shall accept that h(1)=1. By induction one checks that h(n) = n2 ( n positive integer. Indeed, for n = 0 or n = 1 this is true. Suppose it holds for n, check it for n+1. Letting in (5.3) s=n,t=1 we get

(5.5) h(n+1) + h(n-1) = 2(h(n)+h(1))  ( h(n+1) + (n-1)2 = 2n2 + 2  ( h(n+1) = (n+1)2 

It follows that h(x) = x2 ( x integer.

Let now set s=t . Then (5.4) becomes h(2t) = 4h(t). If 2t is an integer, we see that (2t)2 = 4 h(t) ( h(t) = t2. So the claim holds for halfs of integers. Repeating the reasoning, the claim “h(x)=x2” holds for any number of the form x = m2-n , m , n integers. But the numbers of this form are dense, so the claim holds for any x. Remembering the constant k ( ( we get 

(5.6) h(x) = kx2 ( x ( (
On the other hand, ( ( 1 ( h ( 0 ( k ( 0 ( k = -(2 for some nonnegative (.

The conclusion is that

(5.7)
 ((t) = exp(-(2t2) for some ( ( 0.

Otherwise written, P(X-1 = N(0,().

The proof for an arbitrary k runs as follows: let t ( (k . Then t’X and t’Y are again i.i.d. Moreover, t’X + t’Y and t’X – t’Y  are i.i.d. so t’X ( N(0,(2(t)). As t’X is in L2 for any t it follows that X is in L2 itself. As Et’X = 0 ( t ( (n , EX = 0. Let C be the covariance of X. Then Var(t’X) = t’Ct . But we know that t’X is normally distributed, hence t’X ( N(0,t’Ct) ( t ( (n.  From property 3.2 we infer that X ( N(0,C) .(
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