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I. Principle of expected utility (PEU)
1. Basic notions

Somebody has the initial wealth a and he thinks to invest this money into an asset. His final wealth will be

(1.1)
w = a + X 

where  X, the profit is a random variable.

The initial wealth is a constant and the final one is a random variable.  

Definition. The pair (a, X) is called a lottery situation. If not otherwise claimed the random variable X will be supposed from the space

(1.2)
 L =
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How can we appreciate the “value” of a lottery situation?

If we have to choose between the lottery situation (a, X) and a constant (b, 0) – i.e. make no investment at other initial wealth – what shall we prefer? Or if we have to choose between two lottery situations (a, X) and (b, Y)?

Definition. Any function V:((L ( [-(,(] is called an evaluation. If V(a,X) ( V(b,Y) then (b,Y) is better than (a,X) from the point of view of V.

Definition. V is plausible if

(1.3) X  ( Y ( V(a,X) = V(a,Y) ( a (only the distributions of the profit matters)

(1.4) a+X ( b+Y (  V(a,X) ( V(b,Y) (only the final wealth matters)

*PROPOSITION 1.1. A plausible evaluation is of the form V(a,X) = U(a+X) with

U: L ( ( non decreasing and having the property that X ( Y ( U(X) = U(Y)

*COROLLARY 1.2. Let Pr  be the set of all the probability distributions corresponding to random variables from L. (i.e. ( ( Pr  ( 
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d((x) ( ( ( p ( 1). Then any plausible evaluation V is of the form V(a,X) = V*(P((X+a)-1) where V* : Pr  ( [-(,(]  has the property that F( ( F( ( V*(() ( V*((). 

Here by P(Y-1 we denote the distribution of Y and by F( (x) = (((-(,x]) we denote the distribution function of (.

2. Utilities

Definition. A utility is any continuous increasing function u : D ( ( , D ( (.

Meaning: u(a) is the subjective utility attached by a decision- maker to the wealth a. We want u to be increasing because we want to be invertible, i.e. to exist u-1: Range(u) ( (. 

Definition. The evaluation V = Vu is called an utilitary one if it is of the form 

(2.1)
Vu(a,X) = Eu(a+X) 

where u has the property that X ( L, Range(X) ( D  ( u(X) ( L1((,K,P) 


Remark. The condition u(X) ( L1 ( X ( L is sometimes too restrictive. We shall denote by Dom(u) the set of random variables X with the property that Eu(X) makes sense. 

*PROPOSITION 2.1. Any utilitary evaluation is plausible and the function U defined in proposition 1.1 is U(X) = Eu(X)

Remark. Let u be a utility. If we want u to generate an evaluation according to (2.1) it will be necessary that L ( Dom(u). 

Definition. The utility u is normed if 0 ( D and 

(2.2) u(0) = 0

As a consequence for any normed utility u it is true that  x ( 0 ( u(x) ( 0 . 

PROPOSITION 2.2.

* (i). L(((,K,P) ( Dom(u) for any u. 

* * (ii). If 
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( (  for some p ( 1 then  L ( Lp((,K,P) ( Dom(u).

* * (iii). If 
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= - ( ( p ( 1 then there exist always random variables from L which do not belong to Dom(u). It may happen that E(X(p ( ( ( p ( 1 but E(u(X)( = (. For instance if u(x) = ehx – 1 (h > 0) or u(x) = 1 – e-hx  (h > 0) then L is not included in Dom(u). 

Definition. X is heavy tailed to the right if EehX = ( ( h > 0; heavy tailed to the left if EehX = ( ( h ( 0 and heavy tailed  if it is either heavy tailed to the right or heavy tailed to the left. Examples: the lognormal distribution or Weybul.

Definition. If E│u(X)│= ( we say that X is not evaluable by u.

3. Utilities: Basic concepts
The sure equivalent of a lottery. 

Axiom. For a decision-maker with the utility u the lottery (a,X) has the same value with the number a* if  u(a*) = Eu(a+X). Then a* is called the sure equivalent of (a,X). Otherwise written 

(3.1)
a* = u-1(Eu(a+X))

This is the principle of expected utility (PEU).

Other ideas.  Why expectation and not median? The Median of the utility would be another model. Much more difficult to be treated mathematically.

 The selling price of a lottery. A decision-maker is in the lottery situation (a,X) and he wants to sell the lottery X. What price should he demand for X ? 

If he agrees to PEU and has the utility u he should demand such a price p in order to get a better situation as before, i.e. u(a+p) ( Eu(a+X). His last price would be pv = pv(a,X) = pv(a,X; u) such that u(a + pv) = Eu(a+X) hence 

(3.2)
pv = u-1(Eu(a+X)) – a = a* -  a

Definition. The number pv(a,X; u) is called the selling price of X wherer the utility u and initial wealth a. 

The purchasing price of a lottery. A decision-maker has the initial wealth a and he thinks to buy a lottery X. What is the last price he would pay for X if he accepts PEU and has the utility u?

After the deal his wealth will be a + X – (, where ( is the price he has paid for X. The sure equivalent of this lottery should be greater than the utility of a, hence Eu(a + X - () ( u(a). Therefore his last price would be the (unique) solution of the equation Eu(a + X - () = u(a). This ( will be denoted by pc(a,X; u). 

Definition. The unique solution of
 (3.3)
Eu(a - pc + X) = u(a)

is called the purchasing price of X wherer the utility u and the initial wealth a and will be denoted by pc(a,X; u).


Deal and bargain. This scenario implies two decision makers: a seller (S) and a purchaser (P). The seller has a lottery X which is for sale; the purchaser thinks to buy it, for a reasonable price. Both of them accep PEU. S has the utility function uS and the initial wealth a+X and P has the utility function uP and the initial wealth b. 

When a deal is possible?

S will try to get a price p ( pv(a,X; uS) and P will try to obtain a price ( ( pc(b,X; uP). The deal is possible iff

(3.3)’

pv(a,X; uS) ( pc(b,X; uP)


The final price will be the result of a bargain. Notice that in the game both S and P may keep their utilities wherer confidence.


EXAMPLE 3.1.  “S” has the lottery X (
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for sale. His initial wealth is a and his utility is uS(x) = 
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. “P” has the initial wealth b and he considers to buy X. His utility is 

UP(x) = ln x . When a deal is possible?


Hint. Let (= EX=
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. The problem makes sense only if a+m ( 0, b+m ( 0. One finds pv(a,X; uS) =
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 from the equation Eu1(X+a) = 
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= u1(a+pv) The purchasing price is the solution x of the equation Eln(b+X-x) = ln(b) 

( (M+b - x)(m+b - x) = b2 ( pc (b,X; uP) = x = ( + b - 
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( notice that the solution x = ( + b + 
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is a false one!). A deal is possible iff 

(*)
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Notice that if a ( (, then pv ( EX and if b ( ( then pc ( EX.


If for instance : m = - 2, M = 4 then ( = 1. Suppose that a = 4. Then one finds that

pv = 
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. What is the minimum wealth b  of “P” if a deal is possible?The inequality (*) becomes
b + 1 - 
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What if two different utilities produce the same prices?


PROPOSITION 3.0. Let u,v : ( ( ( be utilities. Then

 **pv(a,X; u) = pv(a,X; V) ( a,X  
(  v(x) = A + Bu(x) for some A ( (, B > 0


Bounds for the prices.
PROPOSITION 3.1. Let u be a utility.

* (0).
Let X ( L(, m = Ess inf X, M = Ess sup X. Then


m ( pv(a,X; u) , pc(a,X; u) ( M for any a. 

* (i).
If u is concave then pv(a,X) ( EX, pc(a,X) ( EX .

* (ii).
If u is convex then pc(a,X) (  EX, pv(a,X) ( EX .

* (iii).
Conversely, if pc(a,X) ( EX ( a, ( X bowhered then  u is concave.

* (iv).
If pv(a,X) ( EX ( a, ( X bowhered then u is concave.

* (v).
If pv(a,X) ( EX ( a, ( X bowhered then u is convex.

* (vi).
If pc(a,X) ( EX ( a, ( X bowhered then u is convex.

COROLLARY 3.1.

* pv(a,X) ( EX ( a,X  ( pc(a,X) ( EX ( a,X  ( u is concave

 
*pv(a,X) ( EX ( a,X  ( pc(a,X) ( EX ( a,X ( u is convex


Esscher estimation


**PROPOSITION 3.2. Suppose that u is twice differentiable. Then

 (i)
If u is concave then 
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 ( pv(a,X; u) ( EX ;

(ii) If u is convex then EX ( pv(a,X; u) ( 
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Proof. Expand u in Taylor series :

 u(a + pv) = u(a +X) + u’(a+X)( a + pv – (a + X) ) + u”(() ( a + pv – (a + X) )2/2 with ( a random avriable between a+pv and a + X . Take the expectation and notice that Eu(a+X) = u(a+pv) we get 

E[(X - pv) u’(a+X)] =E[ u”(() ( pv – X)2/2] . As u is concave u” ”(() ( 0 hence 

pv ( 
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. If u is convex the proof is similar.

EXAMPLE. 3.1 (continued). Both uS and uP are concave, so pv ( EX =  
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 for both of them. Esscher’s bounds are 

(M + (1-()m ( pv(a,X; uS) ( 
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(M + (1 - ()m ( pv(a,X; uP) ( 
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Notice that if a = 0 , the LHS’s of the inequalities become the geometric and harmonic means of m and M (provided they are positive). The bounds are better for great values of a. 

Comparisons between the prices given by two utilities.

*PROPOSITION 3.3. Let u : ( ( ( be a utility. Then  

(3.4) pv(a,X; u) = pv(0,a+X; u) – a 
(3.5) pc(a,X; u) =  pc(0,X; ua) , where ua(x) = u(a+x)

Proof.  u(a + pv(a,X)) = Eu(a + X) = u(0 + pv(0,a+X)) ( a + pv(a,X) = 0 + pv(0,a+X). For the second assertion notice that pc(a,X; u) is the unique solution of the equation Eu(a+X- p) = u(a) which is the same as Eua(X - p)  = ua(0) ; deci p = pc(0,X; ua). (
**THEOREM 3.4. Let u: Du ( I, v : Dv ( J be two utilities, I = Range(u), J = Range(v). The following assertions are equivalent:

(i).
pv(a,X; u) ( pv(a,X; v) ( a ( (, X  bowhered.

(ii). pv(0,X; u) ( pv(0,X; v) (X  bowhered.

(iii). u( v-1: J ( I is concave.

(iv). v( u-1 : I ( J is convex.

(?)I do not know if analog results exist for purchasing prices.

**COROLLARY 3.5. Let u be a utility. Then the mapping a ( pv(a,X) is increasing (respectively decreasing)  iff for any a ( b the function ua( ub-1 is concave (convex), 

where ua(x) = u(a+x) and ub(x) = u(b+x).

Example. If u(x) = x3, ua(x) = (x+a)3, ub(x) = (x+b)3 , ub-1 = 
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 ua( ub-1(x) = (
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+ a - b)3 is neither convex nor concave. If we restrict to u : [0,() ( (, taking into account only nonnegative lotteries, then for any 0 ( a ( b ua( ub-1  is convex, hence the mapping a ( pv(a) is  decreasing.

Risk appetence coefficients.  

Definition. Let f: ( ( ( o be twice differentiable.Denote rf (x) := 
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 (it makes sense iff f’ (x) ( 0 ( x) . Call rf the (Arrow – Pratts) risk-appetence coefficient of f and - rf the risk-aversion coefficient of f .

**COROLLARY 3.6. Let  u and v be twice differentiable utilities and let ru and rv be their risk-appentence coefficients.

Then ru ( rv ( pv(a,X ; u) ( pv(a,X ; v) ( a 

Proof. Suppose that că ru ( rv. The claim that pv(.,. ; u) ( pv(.,. ; v) is the same with the claim that u(v-1 is concave. Let y = v-1(x). Then  y’ = 
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 = h(y) (ru(y) – rv(y)) where h(y) =f’(y)/v’(y) 2 > 0. It means that  (u(v-1)’’ ( 0 (u(v-1 is concave. Conversely, if pv(.,. ; u) ( pv(.,. ; v), then u(v-1 is concave, hence (u(v-1)’’ ( 0 or ru ( rv . (
**COROLLARY 3.7. Let u be a twice differentiable utility.Then the mappings t ( pv(t,X; u) and ru have the same monotonicity. Meaning that 

t ( pv(t,X; u) is increasing ( X 
iff
 t ( ru(t) is increasing

t ( pv(t,X; u) is decreasing ( X 
iff
 t ( ru(t) is decreasing

Example. If u(x) = xp , u : (0,() ( (0,() , then ru(x) = (p-1)/x . Therefore if p ( 1 the mapping x ( pv(x) is decreasing and if p ( 1 is increasing. If p = 1, pv(x)  is constant (equal to the expectation of X). Anything makes sense only for nonegative lotteries. 

4. Riscofoby, riscophily

Definition. A decision-maker (DM) has the utility u. We call DM 

· a riscophobe (risk avoiding) iff pv(a,X; u) ( EX ( a,X 

· a riscophile (risk seeking) iff pc(a,X; u) ( EX ( a,X .  

· a risk neutral iff pv(a,X; u) ( EX ( a,X 

(Of course the tipical DM may have behave both ways: for instance be riscophile for small amounts of money and riscophobe for great ones!)

Corollary 3.2 means that „concave utility = riscophoby”, „convex utility = riscophily”. If u is neither concave nor convex many combinations of prices may happen. 

Definition. The risk premium of the seller  is the quantity

 (4.1)

( = ((a,X; u) = EX – pv(a,X; u) = EX + a – u-1(Eu(a+X))

Therefore “riscophoby = positive risk premium”, “riscophily = negative risk premium”, “risk neutral = no risk premium = u(x) = mx+n for some m,n”.

The risk premium of the purchaser  is the quantity

(4.2)

(c = (c(a,X; u) = EX – pc(a,X; u)

Infinitesimal behavior of (v and (c

Let X be a bowhered random variable, ( = EX and (2 = Var(X). Let also

(4.3)
((t) = ((u,a,tX) = t( +a - u-1(Eu(a + tX)) and ((t) = (c(u,a,tX) = t( - pc(u,a,tX) .

**PROPOSITION 4.1. ( and ( are continuous and ((0) = ((0) = 0.

**PROPOSITION 4.2. (Explanation of the name of risk-aversion coefficient) 

Let X ( L(, EX = (, Var(X) = (2 . Then

(4.4)
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where 
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 is the risk-aversion coefficient  of u.

What if 
[image: image39.wmf]r

u = constant?

*PROPOSITION  4.3. If r u  = k = constant then 

· if k = 0, then u(x) = mx + n (liniar utility)

· if k ( 0, u(x) = A + Cekx (exponential utility)

**PROPOZIŢIA 4.4.  (Arrow – Pratts approximation). If X ( L2 then for small (
(4.5)

pv(a,X; u) ≈ EX – 
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Question. How good is the approximation? 


Comparisons of utilities

QUESTION. : If un, u are utilities and un ( u does it result that rn ( r ?

ANSWER. NO! For instance un(x) = 2x + sin(nx) / n, u(x) = 2x. Then un ( u, even uniformly but u”n(x) = - nsin(nx) ( rn(x) = 
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 does not converge. 

QUESTION. If rn ( r does it result that că un ( u ?

ANSWER. Makes no sense. If we know r, it does not result that we know u. 

However

**PROPOSITION 4.5. If the utility u:( ( (  has the risk appetence coefficient r then u is of the form

 (4.6)

u(x) = a +b
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for some a,m ( ( and b > 0. 

Meaningful QUESTION. If rn ( r and u(0) = 0, u’(0) = 1 does it result that că un ( u ?

Definition. A utility u with the property that u(0) = 0 and u’(0) = 1 is called fully normed.

ANSWER:  NO! Let rn = n
[image: image43.wmf])
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; and if x > 1/n we get un(x) = 
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; for x ( 0 we may take un(x) = x. Then limn un(x) = x + (e-1)x+ . But rn ( 0 implies that u(x) = x. The limites are different!

Definition. rn ( r uniformly on compact sets (denoted by rn ( r (uc) !) if the restrictions rn│K uniformly converge to r│K for any compact interval K ( I. 

**PROPOSITION 4.6. If rn ( r (uc) and the utilities un  u are fully normed then un ( u. 

QUESTION. If un ( u then the selling prices (purchasing prices) do converge?

ANSWER. This time is YES, at least for bowhered lotteries.

**PROPOSITION 4.7. Let un, u be twice differentiable utilities and C2 and rn, r be their risk-appetence coefficients. Let also X be a random variable from L( . 

(i).
If un ( u then pv​(a,X; un) ( pv​(a,X; u) and pc​(a,X; un) ( pc(a,X; u);

(ii).
If rn ( r (uc) then pv​(a,X; un) ( pv​(a,X; u) and pc​(a,X; un) ( pc(a,X; u);

The influence of risk coefficients 

***PROPOSITION 4.8. Let un,u,X,m,M as above. Suppose that  un,u : ( (  (. 

(i). If rn ( ( and  rn ( 0 for some n ( n0, then   pv​(a,X; un) ( M, pc(a,X; un) ( M;

(ii). If rn ( 0 (uc)  then   pv​(a,X; un) ( EX, pc(a,X; un) ( EX;

(iii). If rn ( - ( and rn ( 0 for some n ( n0 then pv​(a,X; un) ( m, pc(a,X; un) ( m;

History of the utility theory. THE PARADOX FROM SANKT PETERSBURG.

“Fair price of X” = EX. If so the fair price for X ( 
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 would be pv = (. Considered by Nicholas Bernoulli, 1713. Nobody will pay more than 4 Monetary Units  for it.

Daniel Bernoulli’s explanation : u(x) = log x ( pv (0,X; u) = 22 = 4

Gabriel Cramer’s explanation : u(x) = 
[image: image48.wmf]x

 ( pv (0,X; u) ( 5.84
QUESTION. What kind of utility is that one which rejects a favorable bet at any level of wealth?

**PROPOSITION 4.9. (Follmer)

Let u : ( ( ( be a utility. Suppose that there exists X ( L1 , EX > 0, such that u(a+X) ( L1 ( a but pv(a,X) ( 0 ( a .

Then u is bowhered above.

The converse is not true.

Example. If u(x) =
[image: image49.wmf]1
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 1[0,()(x) + x1(-(,0)(x) then u is a concave utility bowhered above. Its risk-aversion coefficient is 
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1(0,()(x) and converges la 0 cînd x ( ( uniformly on compact sets. According to Proposition 4.8(ii).  pv(a,X) ( EX as a ( (. Therefore for any X such that EX > 0  pv(a,X) > 0 if a is great enough.

If the risk aversion coefficient is bouded below by some ( > 0 then always there exist random variables X ( p(c + q(-b with positive expectation (i.e. cp>bq) such that pv(a,X) ( 0 ( a.

EXAMPLES OF USUAL UTILITIES corresponding to risk-avoiding decison-makers

CARA  utilities(Constant Absolute Risk Aversion) : ur(x) = 1 – e-rx;

HARA utilities (Hyperbolic Absolute Risk Aversion): up,m(x) = (x+m)p – 1, for some 

 0 ( p ( 1 and m > 0. For p = 0 the formula is u0,m(x) = log(x+m). Both Bernoulli’s and Cramer’s utilities are HARA. Then 
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5. Comparison between selling and purchasing prices. 
So the selling price and the purchasing price are the unique solutions of the equations

(5.1) u(a + pv) = Eu(a + X)

and

(5.2)
u(a) = Eu(a – pc + X)

*PROPOSITION 5.1. The purchasing price is a selling price corresponding to another level of initial wealth.

 (5.3)

pc(a,X) = pv(a - pc(a,X),X)


As a consequence, the two prices cannot have opposite signs.

**COROLLARY 5.2. For any utility u t

(5.4) pv(a,X) ( 0 ( pc(a,X) ( 0

**COROLLARY 5.3. Let u o be twice differentiable. Then

(i).
The functions a ( pv(a,X) and a ( pc(a,X) have the same monotonicity for a bowhered X. (ii).
If ru , the risk-appetence coefficient is increasing then the mappings a ( pv(a,X) := pv(a) and a ( pc(a,X) := pc(a) are both increasing. Moreover

-
if pv(a,X) ( 0 ( pv(a,X) ( pc(a,X) ( 0 

-
if pv(a,X) ( 0 ( pv(a,X) ( pc(a,X) ( 0

(iii).
the risk-appetence coefficient is decreasing then the mappings a ( pv(a,X) := pv(a) and a ( pc(a,X) := pc(a) are both decreasing. Moreover 

-
if pv(a,X) ( 0 ( pc(a,X) (  pv(a,X) ( 0

-
if pv(a,X) ( 0 ( pc(a,X) (  pv(a,X) ( 0

(iv).
If the mapping a ( pv(a,X)  is constant, then pc(a,X) =  pv(a,X) ( a,X .


Remark. Te economists agree that a rationale economic behavior is the one described in (ii). The risk aversion coefficient decreases when the wealth increase. 


*PROPOSITION 5.4. If a (ru(a) is constant then a ( pv(a) is constant, too.Then the two prices coincide. Namely pv(a,X; u) = pc(a,X; u) = 
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QUESTION. How is u if the two prices coincide?

***PROPOSITION 5.5. If u is differentiable and pv(a,X; u ) = pc(a,X; u) ( a,X  then ru is constant hence u is either linear or exponential. 

QUESTION. Is it true that pv(a,X; u) ( pc(a,X; u) ( a, ( X ( 0 implies that the risk aversion coefficient is decreasing?  

We think the answer is “YES”, but we have no available proof.

6. Other evaluations : expectation-variance and Esscher

The evaluation “expectation - variance” is popular inn portfolio theory. It has the form
(6.1)            Vk:L2 ( (, Vk(a,X) =a+ EX + k(Var(X), k ( (
For instance if X ( p(1 + (1-p)(0  then 

(6.2)
            Vk(0,X) = p + kp(1- p) = p(1+k) – kp2 : = Vk(p)

It is not plausible in the sense of our definition. At least if (k(( 1. 

Still worse: for no k ( 0 the evaluation (6.1) can be plausible. 

Other economists consider the evaluation “expectation – dispersion”

(6.3) Vk:L2 ( (, Vk(a,X) =a+ EX + k(((X), k ( (
For the random variable from (6.2) it ha sthe form 

(6.4)
Vk(0,X) = p + k
[image: image54.wmf])
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It is not plausible.

Still worse

**THEOREM 6.1. There are no plausible evaluations of the form

V(0,X) = f(EX,Var(X) for some f : (((+ ( ( differentiable and and v ( f(u,v) not constant.

REMARK. In the slang used by the adepts of the evaluation “expectation-variance” EX is called  “the randamen of X” and Var(X ) is “the risk of X”. Then the evaluation

V(X) = EX - k(Var(X) seems to be natural: if I have to choose between two lotteries, both having the same randament I should choose that one with smaller risk. It makes sense and it gives plausible evaluations for normally distributed lotteries.


Another criterion is the Esscher evaluation which is


(6.5)

V(0,X) = 
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 for some positive h.
It is not plausible.
EXAMPLE 6.2. X = 2(1A, Y = 1B + 2(1A cu P(A) = 1 – 2p := q and P(B) = p, p ( 1/3 , A(B = (
Of course X ( Y , but it may happen that V(0,X )( V(0,Y)!

For h =1,  V(0,X) = 
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and V(0,Y) = 
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. The condition V(0,X) ( V(0,Y) becomes 2qpe2 + 2qpe3 + 2q2e4 ( 2p2e + 4pqe2 + pqe3 + 2q2e4 ( qe3 ( 2pe + 2qe2 ( qe2 ( 2p + 2qe ( e2 – 2e (pe2 - 2p + 2pe  ( e2 – 2e (p(e2 - 2 + 2e)   which is not true always. 

QUESTION.
What properties characterize the utilitary evaluations?

ANSWER. Let  Pc be the family of all probability measures on real line having compact support (in terms of random variables, they correspond to bowhered ones)

**THEOREM 6.2.  Let V* : Pc ( ( be a plausible evaluation. It can be represented by a utility if an only it is affine, namely

(6.6) V*((1-t)( + t() = (1-t)V*(() + tV*(() ( t ( [0,1]

and continuous, meaning that

(6.7)
(n ( (,  
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In the Defense of  Esscheru(X) = 
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From Proposition 3.1 we see that Esscheru(X) is a lower bound for the selling price of a lottery by a seller which has the utility u. It corresponds to the ensurance premium 

(6.8)

(r(X) = Esscherr(-X) = 
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It is overcharged.

Another reason for appealing to Esscher evaluation comes from an portfolio problem.

Problem. A ricophobic investor haaving the utility u thinks to invest 1 MU into two assets: X and Y. What is better for him?

 From a mathematical point of view the problem is: find t* ([0,1] to maximize f where

 (6.9)

f:[0,1] ( (, f(t) = Eu((1-t)X + tY)

If X and Y are independent, the answer is

+
If Esscheru(X) ( EY invest only in X i.e. t*= 1;

+
If Esscheru(Y) ( EX invest only in Y ,i.e. t* = 0;

+
Otherwise invest in both.

7. PEU in insurance 
From the point of view of an insurance company (the ensurer):

A customer (the ensured) is identiLetd with a claim that he can demant in case something happens. A claim is an amount of money represented by a random variable X ( 0.

The initial capital of the company is a. If the ensurer agrees to PEU and has the utility function u, it comes that the company is buying the risk of the customer and receives instead a premium H = H(a,X;u). How to compute H ? If H is too great the ensured will choose some other company and if it too small the ensurer will get ruined.

After paying the claim the capital of the ensurer is a – X + H. The company gets a profit if

(7.1)

Eu(a-X+H) ( u(a)

The equilibrium condition used for the net premium is the unique solution of the

(7.2)

Eu(a-X+H) = u(a)

By definition, the insurance companies are risk-avoiding hence u is concave. As a consequence

*PROPOSITION 7.1. Always H(X,a,u) ( EX .

Demonstraţie.  Jensen: u(a) = Eu(a-X+H) ( u(a – EX + H) ( a ( a – EX + H ( H ( EX.(
*PROPOSITION 7.2. Let u be a utility and v(x) = - u(- x). Call v a penalization.
(i). The risk-aversion coefficient of u is the risk-appetence coefficient of v. Precisely

(7.3)

ru(x) = - rv(x)

(ii). The utility  u is concave iff the penalization v is convex. 

(iii). The net premium is a purchasing price 

(7.4)            H(X,a;u) = pc(-a,X;v)

(iv). Defining H*(X,a;u) prin

(7.5)
            H* (X,a;u) = a + v-1(Ev(X-a))

this quantity is the opposite of the selling price corresponding to v . Precisely

(7.6)
            H* (X,a;u) = -  pv(a,-X;u).
8. Ensurance contract, reinsurance.

Why people agree to pay ensurance premiums greater than the average loss if not ensured?

PEU offers an explanation. 

Suppose that there are two persons: “C” (the customer) and “E” (the ensurer). 

“C” has a wealth a and utility u. He is afraid of some loss, - X. If an accident happens then his wealth will be a – X. How much would he pay for hic psychic confort?

He would pay p MU if Eu(a-X) ( u(a – p). The maximum price he would pay in that case is the unique solution of 

(8.1)

Eu(a-X) = u(a – p)

He will agree to pay any p ( (0,p]. Therefore

(8.2)1.              - p = pv(a, -X; u)

As u is concave, - ( ( E(-X) , hence ( ( EX ! “C” will agree to pay more than the expected  loss!

However, if Eu(a – X) > u(a – p) he will prefer not to be ensured.

Now “E” thinks in the same way. His initial wealth is A and his utility function is U. He would agree to assume the risk of “C” if he receives a premium of ( MU if U(A) ( EU(A+( –X ). The minimum ( would be the unique solution of the equation

(8.1) U(A) = EU(A+( – X )

He would be happy to get any price  ( ( (.

Now - ( is a purchasing price:

(8.2) - ( = pc(A,-X ; U)

As  U is also concave it means that ( ( EX.

A deal is possible if p ( (. After a bargain, a deal is possible. This finalizes into a contract of ensurance.

*PROPOSITION 8.1. A contract between “C” and “E”is possible iff

(8.3) pv(a, -X; u)  (  pc(A,-X ; U)

Here is a sufficient condition for that:

**PROPOSITION 8.2. Suppose that the utilities u, U have the property

(8.4) ru ( rU , ru  and rU are increasing

Suppose that a ( A . Then a contract is possible. 


Economical interpretation. A contract is surely possible if the ensured is more risk-avoiding than the ensurer and poorer, if both of them behave rationally.

The ensurer may seek reinsurance, too.

Definition. A reinsurance is a function X ( I(X) from a family of nonnegative random variables to itself with the property that  0 ( I(X) ( X
Interpretation: if a claim X occurs, the ensurer pays X – I(X) and the reinsurer pays I(X). Of course, not for free. 

Examples. 1. The reinsurance “stop at loss”. I(X) = (X – m)+ . Then X – I(X) = min(m,X) = m ( X.  The ensurer pays at most m  UM; the difference X-m  is paid by the reinsurer. 

2. The proportional reinsurance : I(X) = (X, 0 (( ( 1. The reinsurer pays (X and the ensurer pays (1-()X.

Several combinations are also used.

The reinsurance “stop at loss” is somehow better for the ensurer from the point of view of the variance:

**PROPOSITION 8.3. Let Isl(X) =(X -m)+ , a = E(X -m)+ . Let I(X) be another reinsurance. 

If E(I(X)) = a , then Var(X – I(X)) ( Var(X-Isl(X)) := Var(m ( X).

9. Experimental economy and critics of the utilitary evaluations

The modern theory of utilites stems from Von Neumann and Morgenstern. (Theory of games and economic behavior, Princeton University Press).

Experiments were made to check if it is a good model for real decision makers; if, as in psychanalisis, every decision maker has an (subconscious) utility function.

Alais Paradox (1953).

First scenario.

You have to choose between X = 1 and Y ( 0.1((5 + 0.89((1 + 0.01((0 .

What do you prefer?

 EX = 1, EY =  1.39 . 

The majority of the subjects preferred X. Then

Second scenario.
u(1) > 0.1 u(5) + 0.89 u(1) + 0.01 u(0) 
(
 11 u(1) > 10 u(5) + u(0)

You have to choose between V ( 0.11((1 + 0.89((0  and W ( 0.1((5 + 0.9((0
What do you prefer?

Now EV = 0.11, EW = 0.5.

The majority preferred  W, meaning that

11u(1) + 89 u(0) ( 10 u(5) + 90 u(0)
( 
11 u(1) ( 10 u(5) + u(0)

Contradiction!

Kahneman, 2001 repeated Alais experiment.

First scenario

X = 3, Y ( 0.8((4 + 0.2((0 
( EX = 3, EY = 3.2.

Majority preferred X
(
5u(3) > 4u(4) + u(0)

Second scenario

V ( 0.2((4 + 0.8((0 , W ( 0.25((3 + 0.75((0 
(
EV = 0.8, EW = 0.75

Among them, majority preferred 
V
(
5u(3) ( 4u(4) + u(0)


Solutions of the paradox: subjective probabilities (Yaari)
10. Preferences. Axioms.

Defininions.
Let S be a set of scenarios. A weak preference (WP) on S is any relation , denoted by “«” with the properties

(P1)
For any x,y ( S either x « y or y « x ;

(P2)
If x « y and y « z then x « z
If both x « y and y « x we say that x and y are indifferent and denote that by x ( y.
If it is not true that y « x we say that y is prefferred  to x and denote that by x ( y. This is the strict prefference.

If there exists a function u : S ( ( with the property that x ( y  ( u(x) ( u(y) we call u a numerical representation for  “(”. 

**PROPOSITION 10.1. Suppose that u is a numerical representation for  “(”. Then 

(i) x « y ( u(x) ( u(y) 

(ii) x ( y ( u(x) = u(y)

(iii) x ( y, y ( z ( x ( z and x « y, y « z ( x « z  (transitivity)

(iv) The indifference is an equivalence relation

(v) For any x,y either x « y or y « x (completeness)


*Example 1.  Let S = ( and u(x) = 1[0,()(x). Check that x ( y ( x ( 0, y ( 0, x ( y ( x and y have the same sign (convention: the sign of 0 is + !) , x « y ( x and y have the same sign or x is negative, y pozitive. 

*If u:( ( ( is increasing then check that x ( y ( x ( y and x « y ( x(y. 


Notations
[x,() = (y ( S│x « y( and  (x, () = (y ( S│x ( y(
((, x] =(y ( S│y « x( and  ((, x) = (y ( S│y ( x( 

Example 2.  Let S = (d, d ( 2 . Define x « y ( xi ( yi ( 1 ( i ( d . Then  “«” admits no numerical reprsentation. It is not complete. 
**PROPOSITION 10.2. Let “«” o WP on S. Then

(i).
x ( y 
(
x « y

(ii).
x ( y, y « z 
(
x ( z ; 

and
 x « y, y ( z    (   x ( z
(iii).
x « y 
( ((, x] ( ((, y]

and 
x ( y 
( ((, x] ( ((, y)

(iv).
((, x )c = [x, (), (x, ()c = ((, x] 
and 
x ( y ( ((, y) ( (x, () = S .

(v).
x « y, x ( x’, y ( y’ ( x’ « y’ ; therefore on the set of equivalence classes of “«” it becomes a complete order relation.


**PROPOSITION 10.3. If S is at most countable, any WP on it admits a numerical representation.

Definition. Let “«” be a WP on S. A set Γ ( S is called order-dense if

 ( x,y ( S such that  x ( y there exists s ( Γ such that  x «  s « y. 

***THEOREM 10.4.  Let “«” be a WP on S. 

Then “«” admits numerical representation  ( S contains an at most countable order-dense set Γ.

If S is a topological space the things simplify.

Definition. Let  “«” be a WP on a topologic space. Then  “«” is called continuous iff “the intervals” (x, () and ((, x) are open sets for any x ( S. 

Recall that S is separable if it contains an at most countable subset Γ ( S and it is connected if it contains no sets A  which are both open and closed excepting the trivial cases

 A = ( and A = S.

***THEOREM 10.5. Let S be a separable connected topologic space and let “«” be a WP on it which is continuous. Then  “«” admits numeric representation using a continuous u.

Preferences among lotteries.


Instead of S  we hace a convex family of probability measures on a measurable space (S,S) denoted by P. which contains the Dirac measures (i.e. distributions of constants). Convexity means that (, ( ( P  ( (1-t)( + t( ( P ( t ( [0,1] and has the obvious meaning that if the distributions of X,Y  are in P then the distribution Z = X1A + Y1B , B = Ac is in P  too, if Ais independent both on X and on Y. 


Suppose that a decision-maker has a WP among the distributions from P, denoted by “«”. As before,  “( ( (” means that it is not true that ( « ( and “( ( (” means “(«( and («(”. 


QUESTION 1. When  “«” admits a numerical representation i.e. when it exists a function U: P ( ( such that ( « ( ( U(() ( U(() ?

QUESTION 2. When U is a Von Neumann-Morgenstern (VNM) representation, i.e. when U has the form 

(10.2)

( « (
(
U(() ( U(()
(   
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ud(
for some u : S ( ( ?

Definition. “«” satisty the afinity property if 
(AFF)

(j « (j , j = 1,2
( (1-t)(1 + t(2 « (1-t)(1 + t(2 ; în plus, if

(1 ( (2 sau (1 ( (2  then  (1-t)(1 + t(2 ( (1-t)(1 + t(2

and the continuity property if

(CNT)

( ( ( ( ( ( ( s,t ( (0,1) ca (1-s)(+s( ( ( ( (1-t)(+t(

***THEOREM 10.6. Suppose that 

(i).
relation “«” on P  satisLets the axioms (AFF) and (CNT).

(ii).
there exist (n ( (n ( P such that [(n,(n] ( [(n+1,(n+1] ( n and 
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Then there exists U: P (( affine such that ( « ( ( U(() « U(()


Moreover, U is unique up to an affine transform, meaning that any other numerical representation of  “«”, sayU* , has necessarily the form U*(() = aU(() + b for some a > 0.


**COROLLARY 10.7. Let P0 the set of simple distributions from P. Suppose that “«” satisLets the axioms (AFF) and (CNT). Then U from the above theorem is a VNM representation on P0 , meaning that

(10.6)

( ( P0 ( U(() = 
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where  u(x) = U((x)

Example 3. 

Let

 P  = ((: P (N) ( [0,1]│ ( is a probability and limn(( en(((n() does exist and it is finite(
Of course P is convex. The preference is

(10.7)

( « ( ( limn(( en(((n() ( limn(( en(((n()


An affine numerical representation is U(() = limn(( en(((n() since

 ( « ( ( U(() ( U(()

Moreover the preference “«” satisLets the axioms (AFF) and (CNT). 


Hoever it does not admit a VNM numerical representation becasuse if 

U(() =
[image: image65.wmf]ò

ud( for some u : N ( ( 

then for ( = (x we should have U(() = u(x). But in this case U(() = 0 ( u = 0 hence it should result that  U(() = 0, false. For instance if ( = Negbin(1, 1- e-1) ( P  then

U(() = limn(( en(((n() = limn(( en(1- e-1)(e-n = 1 – e-1 ( (. 

The most familiar topology used in probability theory is the weak one. Then it is known that if S is a separable metric space then P0 is dense în P. Actually

***LEMMA 10.10. Let S be a separable metric space and let M  the set of all bowhered measures on B(S). Let M0 be the set of all measures with finite support. Then M0 is dense in M w.r.t. the wek topology.

The VBN representation theorem


***PROPOSITION 10.11. Let S be a separable metric space and let “«” be a preference on the set P  of all the probability measures on B(S). If  “«” satisLets the axioms (AFF), (CNT)and if, moreover, it is continuous in the weak topology – meaning that the “intervals” ((,() and ((,() are open for any ( ( P then there exists u : S ( ( continous and bowhered such that  ( « ( ( 
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Remark. The usual utilities are NOT bowhered. As a consequence the supposition that “«” is continuous is too strong. The weak topology should be replaced with a weaker one. See H. Follmer, A. Schied, Stochastic Finance, Berlin 2002.


A idea ( P. Fishburn , Utility theory for Decision Making, Wiley 1970) is to add to the axioms (AFF) and (CNT) another one, the Sure Thing Principle
(STP)

((A) = 1, (x ( ( ( x ( A ( ( ( (

 For instance Example 3 violartes this principle since U((x) = 0 ( x .


An explanation of Alais Paradox. (AFF) may be violated in real situations.

 (10.9)
(1 = (33(2500 + 66(2400 + (0)/100, (1 = (2400 (hence E(1 = 2409, E(1 = 2400)


(2 = (34(2400 + 66(0)/100, (2 = (33(2500 + 67(0)/100 (hence E(2 = 816, E(2=825)


The majority choosed (1 ( (1 and (2 ( (2. But ((1 + (1)/2 = ( (2 + (2)/2 !

11.
Solutions of Alais oaradox: Savage representations, robust representations


Here all the random variables are non negative. For any such a r.v.,  X we shall denote essinf(X) by m(X) and the distribution of X by (X.


Suppose that a decision maker DM has a prefference “(” on the set of all the distributions on [0,() which admits a numerical representation.


First idea. Subjective probabilities. 


Maybe our DM accepts PEU but he is distorting the real probabilities, fearing the worst case. Formally, he instinctively replaces (X by (*X =  ((m(X) + (1-()(X  for some ( ( (0,1). 


Then a numerical representation of “(” is

(11.1)              U*(X) = (m(X) + (1-()Eu(X) 

instead of the “orthodox”  U(X) = Eu(X).


That could solve Alais Paradox. If X1 ( (33(2500 + 66(2400 + (0)/100, Y1 = 2400 (hence EX1 = 2409, EY1 = 2400) the majoriy decided that X1 ( Y1 and if X2 ( (34(2400 + 66(0)/100 and 

Y2 ( (33(2500 + 67(0)/100 (hence EX2 = 816, EY2=825) the majority decide that X2 ( Y2.


If the real DM’s behave as in (11.1) they should do the following thing: remark that m(X1) = m(X2) = m(Y2) and m(Y1) = 2400. Then, using u(x) = x we get

(11.2)

U*(X1) = (m(X1) + (1-()Eu(X) = 2409(1-(), U*(Y1) = U(Y1) = 2400



U*(X2) = (1-()EX2 = 816(1-(), U*(Y2) = 825(1-()


If ( > 9/2409 then U*(X1) ( U*(Y1) , U*(X2) ( U*(Y2) so it makes sense: there is no paradox.


Savage’s idea

Maybe the real subjects have a subjective probability Q and a utility u  and they distort the real probabilities according to it. Formally the numeric representation is 

(11.3)

U(X) = EQu(X) = 
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u(X)dQ

It solves Alais paradox, but creates others.


Ellsberg’s Paradoxe. 


The DMs have to choose between two sceenarios. Two boxes are presented to them, both with 100 white and black balls. The first box has 51 white balls and 49 black ones. About the second box they get only this information: there are 100 balls, black and white.


The experiment has two phases. 


Phase I: The scenario is 1000 MU if they extract a white ball; if the ball is black, nothing. They have the right to extract the ball either from the first box, or from the second one, as they choose. 


Majority preferred to extract the ball from the first box, with the structure 51W-49B.


Phase II: The experimenter looks on a sheet of paper and says “Oh, sorry! The real scenario was that you get 1000 MU if you extract a black ball, not a white one! Please repeat!”


The majority preferred again the first box.


This is a paradox. If the real DM has a subjective idea about the second box, namely that k balls are white and 100-k are black, he should choose the other box at Phase II of the experiment!


Follmer and Schied’s solution of both Alais and Ellsberg paradoxes in the frame of PEU


Idea: a real DM considers not only one possible scenario, but more of them and adopts the prudential strategy that bad things happen.


Formally on a measurable space ((, K) he has in mind a whole family of probabilities, Q and his numerical representation is 

(11.4)

U*(X) = inf (EQu(X) │ Q ( Q (
hence X ( Y ( U*(X) ( U*(Y).


This is a solution of Ellsberg Paradox. A representation of this form is called a robust representation.

In this case 


( = (1((2 with (1 = (2 = (0,1(. Let ( = 0.51 and Q all the probabilities of the form

(11.5)

 Q = ((1-()(0 + ((1)(((1-p)(0 + p(1) 

where where p ( [(, (] is his subjective probability of a white ball in the second box. If we agree that “0” = “black ball” and “1” = “white ball” in the second box then

( = (0,0) = “black ball in Box I, black ball in Box II”
(
 Q(((() = (1-()(1-p)


( = (0,1) =  “black ball in Box I, white ball in Box II”
(
 Q(((() = (1-()p
( = (1,0) =  “white ball in Box I, black ball in Box II”
(
 Q(((() = ((1-p)

( = (1,1) =  “white ball in Box I, white ball in Box II”
( 
Q(((() = (p

Then  X1(() = 1000(1, Y1(() = 1000(2 , X2(() = 1000(1 – (1), Y2 =1000(1 – (2) ; X1 and Y1 are the gains in Phase I and X2 and Y2 are the gains in Phase II . As

EQ u(X1) = 
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EQ u(Y1) =  pu(1000) + (1 - p)u(0),

 

EQ u(X2) = (1- ()u(1000) + (u(0), 

EQ u(Y2) = (1- p)u(1000) + pu(0)

We get the following evaluations for an increasing u>

U*(X1) = inf (EQu(X) │ Q ( Q ( = (u(1000) + (1 - ()u(0) (does not depend on p!)

U*(Y1) = inf (EQu(X) │ Q ( Q ( = inf( pu(1000)+(1-p)u(0) │ (( p( (( = (u(1000)+(1 - ()u(0) 

U*(X2) = inf (EQu(X) │ Q ( Q ( =(1 – () u(1000) + (u(0) 

U*(Y1) = inf (EQu(X) │ Q ( Q ( = inf( (1-p)u(1000)+pu(0) │ (( p( (( = (1-()u(1000)+(u(0) 

The preferences from Ellsberg experiment imply

(u(1000) + (1 - ()u(0)
 >
 (u(1000)+(1 - ()u(0)   ( ( > (
(1 – () u(1000) + (u(0)  >
(1-()u(1000)+(u(0)
( 1 - ( > 1 - (  ( ( ( (

Conclusion: If  ( ( 0,51 ( ( there is no paradox. 


The Follmer-Schied model.

A random variable X becomes a transition probability from ( to ( denoted by X*. X*(() is the subjective distribution of X is ( happens. If X*(() = ( = constant, the meaning is that the DM has no doubts about the distribution of X. 

We restrict the discussion to bowhered random variables.

Let  Pc be the set of all the distributions on ( with compact support. A random variable becomes a function X*:( ( Pc and the representation (11.4) becomes

(11.5) U*(X*) = 
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This representation does not satisfy (AFF). The reason is that

(11.6)

U*((1-s)X* + sY*) ( (1-s)U*(X*) + sU*(Y*)

Denote the fact that U*(X*) = U*(Y*) by” X* ( Y*” . Then

(11.7)

X* ( Y* , 0 ( s ( 1 ( U*((1-s)X* + sY*) ( U*(X*) sau, cu notaţiile din cap. 10



X* ( Y* , 0 ( s ( 1 ( X* « (1-s)X* + sY*

We call (11.7) the  “aversion for lack of information” (ALI).


The axiom (ALI) implies the independence in case of certitude.


***THEOREM 11.1 . Suppose that “(” admits a numeric representation as in (11.5). Let X*,Y* and Z* be “random variables”. Suppose that Z* = ( is constant (meaning that we know the distribution of Z) .


Then

(11.8) X* ( Y* , 0 ( s ( 1  ( (1-s)X* + sZ* ( (1-s)Y* + sZ*

(11.9) If X* ( Y* ( Z* then there exist 0 ( s,t ( 1 such that 
(1-s)X* + sZ* ( Y* ( (1-t)X* + tZ* ( Y*

****THOREM 11.2 (Follmer).


Suppose that “(” satisLets the properties  (11.7), (11.8) and (11.9). 


If, moreover, it satisLets the properties

(11.10)

If X*(() ( Y*(() ( ( ( ( , then
 X* ( Y* (monotonie)

(11.11)

If X* ( Y* and Y*n ( Y (weak convergence!) then X* ( Y*n ( n great enough

Then there exists u: ( ( ( increasing and a family of probabilities on ((,K), notată cu Q, such that

X* ( Y* ( 
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II.
Monetary measures for the risk of a financiary position


In real situations, when somebody makes a risky investment he does not know the distribution of the outcome. It is desirable to try other approaches, outside PEU.


Definition. Let ( be set some arbitrary set, the set of scenarios. We call  financiar position any function X : ( ( (, where X(() is the gain of the investitor provided that the scenario ( occurs. 

The Set ( of the scenarios may be finite or not

We want to describe thee risk of this financiary position by a number ((X). We can think at ((X) as if it is a mimimum sum of money which, added to X  makes X acceptable if it is invisd in risk free assets.

Maybe ((X) makes no sense for some financiary positions. 

W shall suppose that always Dom(() is a vector space of bounded functions X:( ( ( and that it contains the constants. 
Definition. The function (: X  ( ( is called  monetary measure of risk (MMR) if  it satisfies the properties 

(i).
X ( Y 
( ((X) ( ((Y)

(ii).
((X + a) = ((X) – a ( a ( (
(iii).
((0) = 0

Remark. The first axiom is a monotonicity one. If the investment Y is better than X no matter of the scenario ( then it is natural for Y to be considered less riskier than X, thus ((Y) should indeed be smaller than ((X). The second axiom is a translability one: if we agree that we need ((X) MU to make X acceptable then for the position X + a we should need less money, namely ((X) – a (if a ( 0). Finally, the third one is a norming: if X = 0 we invest nothing

Examples.

1.
((X) = - inf X. Here X   is the space B((,() of the real bounded functions defined on. This is the measure called ”the worst case approach”. A bit more general: if X is  L(((,K,P) and ((X) =  - essinf X. For example, if X ( Uniform(-1,1) then ((X) = 1. We have to add 1 M.U. to be sure.
2.       ((X) = - pc(a,X; u) where pc is the  purchasing price defined above by equality

(3.3). Here u : ( ( ( is an increasing function, X  = L(((,K,P) and a is the initial wealth of the investitor. The Axioms (i)-(iii) are **easy to check. For example : 

if X ( Uniform(-1,1) and u(x) = 1 – e -rx cu r > 0, then ((X)=
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 and  u(x)=x((2x) then ((X) = 
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3. Value at risk.  Let 0 ( p ( 1. 

Definition. Let X be a random variable. The number

(1.1)

VaRp(X) = inf(m│P(X+m ( 0) ( p(

is called Value at risk at level  p. 


The reason of the definition is: if an investitor chooses a security level p – for example p = .001 – then the probability that he will be ruined if he has an extra amount of VaRp(X) M.U. is p. 

Remark that if FX is the distribution function of X, then VaRp(X) = inf(m│FX(-m-0) ( p( = inf(-t│FX(t-0) ( p( = - sup (t│FX(t-0)((  p( = - sup (t│FX(t)((  p( = - FX+(p). It means that VaRp(X) is the opposite of the superior quantile at level p of X. Thus we can write 

(1.2)             VaRp(X) = - FX+(p) = - sup FX-1((- (, p])

Let ((X) = VaRp(X).

As X ( Y ( FX ( FY ( FX-1((- (, p]) ( FY-1((- (, p])  it follows that 

sup FX-1((- (, p]) ( sup FY-1((- (, p]) deci VaRp(X) ( VaRp(Y) So X ( Y  ( ((X) ( ((Y).

Moreover FX+a(x) = FX(x-a) ( FX+a-1((- (, p]) = (x│FX(x-a) ( p( 

implies sup FX+a-1((- (, p]) = a + sup FX-1((- (, p]) ( ((X+a) = ((X) – a
so the translability follows. Finally, if X = 0 then VaRp(X) = 0.

For instance if X ( Uniform(-1,1) then FX(x) = [½(x+1)+](1  ( FX+(p) = 2p-1 deci ((X) = 1 – 2p. 

\If X ( Normal(a,(2) then VaRp(X) = - a - ((-1(p) where ( is the distribution function of the standard normal distribution.

4.
On the contrary, the selling price is NOT a monetary measure of risk. It is NOT translatable. The condition ((X+m) = ((X) – m ( m ( ( is satisfied iff u is exponenţial or liniar. 

5.
Expected value at risk is defined as prin 

(1.3)

EaRp(X) = - E(X; X ( FX+(p)), 0 ( p ( 1


It is not translatable. For instance, if X ( Uniform(0,1) then FX+(p) = 2p-1, FX+1+(p) = 2p hence ((X) = p(1-p) but ((X+1) = - E(X+1; X + 1 ( 2p) = - p2 ( p(1-p) – 1 = ((X) – 1.


Desirable properties


Definition. Let ( be a o MMR. We call it convexă if 

(1.4)

(((1-t)X + tY) ( (1-t)((X) + t((Y) ( 0 ( t ( 1, X,Y ( X

pozitive homogeneous if

(1.5)

((tX) = t((X) ( t ( 0, 


The convexity has the meaning of encouraging the diversification of portfolio. An investitor thinks to invest in two risky assets, X and Y. What is better? To put all money either in X or in Y or to invest in both? The economists say that the second option is smarter. If the MMR is convex then it describes that common sense attitude.


In our Examples noastre

1. ((X) :=  - essinf X is clearly convexă and pozitive homogeneous;

2.
If u is concavă, then ((X) := - pc(a,X; u) is a convex MMR 
But not positively homogeneous.


3.
Value at risk is pozitively homogeneoous but not convex. Here is an example: Let X,Y ( 
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be two i.i.d. random variables and let t ( (0,1). 

Then (1-t)X+tY ( 
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. Let p be  such that ca 1 –  q ( p ( 1 – q2. Then VaRp(X) = VaRp(Y) = -1 since FX+(p) = 1.  On the other hand F(1-t)X+tY+(p) = │2t-1│ as

(1-q)2 + q(1-q) = 1 – q ( p ( 1 – q2 = (1-q)2 +q(1-q) +q(1-q). So VaRp((1-t)X+tY) = - │2t-1│ and  (1-t) VaRp(X) + tVaRp(Y) = -1.

REMARK. This is the main critic of the measure “Value at risk”: it is NOT convex.

It may imply absurd behaviors. Suppose for example that we have an amount of 2 UM and have to choose between two scenarios as follos: there are two banks A and B. Both of them give the same interest rate denoted by i. The probability that they will crash is the same, namely p (For example 1-q = .001). If we put all the money in A our profit is a random variable X distributed as repartiţia 
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. If we put them in B the profit, denoted by B has the same distribution.If we choose to put 1 MU in each bank and we suppose that X and Y are independent then the profit will be ½(X+Y) ( 
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. Now suppose that we believe in the MMR “Value at risk” and our security level is some p such that  1 –  q ( p ( 1 – q2 (For example p = .0015 ) . Then VaRp(X) = VaRp(Y) = - 2i and VaRp(½(X+Y)) = 1-i . As 1-i ( - 2i we are advised to put all our money in the same bank !


REMARK. However, “Value at risk” is a convex MMR on some subspaces of random variables. For example, if X  is a gaussian space (It means all its r.v. are normally distributed, as it happens if they are linear combinations of the components of some normally multidimensional random vaector) then VaRp is a convex MMR. Tue, one must give up the precaution that the financiary bositions be bounded.

Acceptability domain of a MMR.

Definition. Let (: X  ( ( be a MMR. The set

(1.6) A( := (X ( X │((X) ( 0(
is called the acceptability domain of (. 

(The pozitionsfrom A( are acceptabl because they do not need extra capital) 


The Set A(  has the following properties:


**PROPOZIŢIA 1.1. Let (: X  ( ( o MMR and A( defined as above. Then

(i).
A( ( ( and X ( A(, X ( Y ( Y ( A(;

(ii).
((X) = inf(m ( (│m+X ( A( (;

(iii).
Let X ( A( and Y ( X. Then the function h(t) =(((1-t)X+tY) is continuous, hence the set (t([0,1]│(1-t)X+tY ( A( ( is closed.

(iv).
If ( is convex then A( is a convex set. Conversely, if A( is convex then ( is convex too;

(vi).
If ( is pozitively homogeneous then A( is a cone.

It means that X ( A(, ( ( 0 ( (X ( A(. The converse is true too.

(v).
A( is convex cone
(
 ( is convex and pozitive homomogeneous.


An alternative way to construct a MMR could be: shoose a set of MMRs denoted byA. We declare them to be acceptable. On this basis construct a MMR denoted by  (A according to the rule 

(1.8)

(A (X) = inf (m( (│X+m ( A (

In order that the trick work the set A must satisfy the axioms

(1.9)
(A1)
( X ( X  ( m ( ( ca X + m ( A 

(1.10)
(A2)
X ( A, Y ( X ( Y ( A
and

(1.11)
(A3)
(m│X = m ( A ( = [0,()


**PROPOSITION 1.2.  If A ( X satisfies the axioms (A1)-(A3) then (A defined by (1.8) is a MMR. If A is convex, then it is convex and if A is a cone then it is and pozitively homogeneous.


**PROPOSITION 1.3. Let ((,K) be a measurable space andlet P be a familiy of probabilities on it. Let X  be a vector space of measurable bounded functions containing the constants. Then

(1.12)

(: X ( (, ((X) = sup(- EQX│Q ( P ( = - inf (EQX│Q ( P (
is a convex and positively homogeneous MMR. Here EQ(X) = 
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XdQ is the expectation of X computed by means of Q.

Its acceptability domain is the set

(1.13)

A ( = (X( X │EQX ( 0 ( Q ( P (

The average value at risk

Let ((,K,P) be a probability space p ( (0,1). For any random variable X we denote its distribution function by FX(x) = P(X ( x) and its quantiles by FX+(p) = sup(x│FX(x) ( p(

Let also Pp = (Q The probability pe ((,K)│Q((P and 
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Definition. The MMR

(1.14) AVaRp (X) = sup(- EQX│Q ( Pp( = - inf (EQX│Q ( Pp(
is called  the average value at risk at level p.


***PROPOSITION.1.4. The following equality is true

 (1.15)

AVaRp (X) = 
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Why this name? Because


***PROPOSITION 1.5.
 AVaRp (X) = 
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REMARK. It follows that AVaRp ( VaRp , meaning that the MMR “Average value at risk” is more pessimistic that”value at risk”. It is convex and positively homogeneous.

For instance if X ( N(0,1) then VaRp(X) is (-1(1-p) but AVaRp(X) = 
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. The first MMR is positive (positive means “Danger”) only for p > ½ the second one is always pozitive

As a mathematical consequence: always the inequality 
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 + (-1(p) ( 0 ( p( (0,1) holds.

 Explanation of the stars

*

means “Easy”

**

means “You should need a hint”

***

means “You should understand from the references”

****

means “For me is very difficult. Congratulations if you understand the proof”






� Că inegalităţile nu sunt contradictorii rezultă dintr-o afirmaţie mai generală: dacă X este o variabilă aleatoare şi f,g sunt două funcţii comonotone (adică (f(x)-f(y))(g(x)-g(y)) ( 0 !) atunci cov(f (X),g(X)) ( 0 iar dacă sunt antimonotone  (adică (f(x)-f(y))(g(x)-g(y)) ( 0 !) atunci cov(f (X),g(X)) ( 0, după cum rezultă imediat din E(f(X)-f(Y))(g(X)-g(Y)) ( 0 (respectiv ( 0) şi alegînd Y oversiune independentă a lui X. În cazul din corolar f(x) = x iar g(x) = u’(a+x). Dacă u este convexă, f şi g sunt comonotone iar dacă e concavă sunt antimonotone.
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