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Capitolul IV.   Premium principles

According to PEU the problem is:
The Ensured ( C )

He has an initial wealth a, a utility function u and a damage he fears of, X. He agrees to pay a sum Hu(X) to be sure that if the accident X happens he will get some money – eyther all the sum X or part of it. If, in case the accident happens he will get all the money caused by it, the maximum premium he will agree to pay is the solution of the equation 

Eu(a-X) = u(a – Hu(X)

So from his point of view Hu(X) = - pv(a,-X; u) will be a fair premium. 

Definition. The quantity Hu(X) = a – u-1(Eu(a-X)) is called a premium of type “C”

In the special case a = 0 we Hu(X) a standard premium.


The Ensurer ( I )


His initial wealth is A and his utility is U. He would agree to assume the damage – X for a good price (U(X). He has many customers, ensured societies and thinks he will cover the damage from the premiums paid by other customers with no claims. In this case the minimum sum he would accept is the solution of the equation

U(A) = EU(A+(U(X) – X)

Therefore (U(X) = - pc(A,-X;U) 

Definition. The quantity (U(X) is called a premium of type “ I ”. In the special case A = 0 it is called utilitary premium.

Ensurance contract

It is possible iff Hu(X) ( (U(X), if “C” agrees to pay more than the minimum premium accepted by “E”. A sufficient condition is that a ( A and the risk aversion coefficient of “E” be smaller that the one of “C”. 


Here we shall treat the problem in an abstract way: what is a premium principle, what desirable properties it should have, what is the connection between it and the ruin probability.

1. Fair  principles
From the point of view of “E” a risk is a non negative random variable X imagined as a claim of the “C”. 

Let L+((,K,P) = L+  the set of the risks of some probability space ((,K,P)

Definition.  A premium principle is any mapping

H : L+((,K,P) ( [0,(]

The quantity H(X) is called the premium paid for X. 

Desirable properties. Seems fair that a desirable property is the monotonicity.

(1.1)

X (st Y  ( H(X) ( H(Y)

As a consequence

(1.2)              X (st Y and Y (st X  ( H(X) = H(Y)

What matters is the distribution of the claim. 

Therefore a premium principle is better thought as a mapping

(1.3)                H : Prob((0,(), B((0,())) ( (+
Then a desirable property is

(1.4) ( (st (  , ( ( (  ( H(() ( H(()

(A riskier client should me charged more)

If we let aside the questions concerning the profit of “E”, to be added later, a good premium principle should also satisfy the condition

(1.5) H((a) = a ( a ( 0

Indeed,  (a is the distribution of the random variable X = a. If “C” will lose surely a  UM then “E” will give him this money for the same price. Of course this is an pure game; suc a thing does not exist. 

Definition 1. A premium principle which satisfies (1.4) şi (1.5) is called a fair one. 


Definition 2.  A premium principle H  is called affine iff 

(1.6)             H((i) = H((i) , i=1,2 ( H(p(1 + (1-p)(2) = H(p(1 + (1-p)(2)

***THEOREM 1.2.

(i).
Let f : (0,() ( (0,() be continuous increasing. Then

(1.7)             H(X) = f –1(Ef(X)) 

is a fair and affine premium principle for X ( L1.

(ii). 
Conversely, if H is fair, affine and weakly continuous 

(i.e. (n ( ( implies H((n) ( H(()!)  

then for any a > 0  there exists a function fa : (0,a( ( (0,1( continuous and increasing such that for the equality H(X) = fa-1(Efa(X)) holds for any risk 0 ( X ( a.

Remark. A premium principle may not be weakly continuous. For instance H(X) = EX is clearly fair and affine but not weakly continuous since if (n = 
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 then (n ( (0 but H((n) = 1 and H((0) = 0. 


Definition. A premium principle of the form (1.7) will be called a standard principle. Notice that H(X) = EX is standard and any standard principle is fair an affine.

2. Realistic principles. Risk aversion.

Definiţion. H is realistic iff H(X) ( EX for any X.

Reason : suppose that H(X) ( EX for some X. Let (Xn)n be a sequence of i.i.d. r.v.’s distributed as X. All of them should pay the same premium, H(X). For n such customers them “E”will receive nH(X) UM and his profit will be 

Un = nH(X) – ( X1 + …+Xn ) = n(H(X) – Sn/n) . But as n ( ( Un ( - ( (From the law of large numbers!). So “E” will be ruined.

QUESTION. When a standard premium principle (PP) is realist?

ANSWER

* PROPOSITION 2.1. A standard (PP) is realist iff  f is convex. Denote it by Hf .

(2.2)
Hf(X) = f –1( Ef(X))

      * PROPOSITION 2.2. Always Hf = Haf+b for a > 0, b ( (
Example 1. If f(x) = xp for p ( 1 then  

(2.3)

H = Hp(X) = (EXp)1/p = ║X║p. 

This is the Lp principle. 
Examplel 2. If  f(x) = eax - 1, a ( 0 then Hf is the solution of the equation

 eaH = EeaX = m(a) where m is the m.g.f. of X. Therefore 

(2.4)

H = Hexp(a)(X) = 
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This is the exponential principle.


Recall
Definiţie. Suppose f is twice differentiable. Being convex, f” ( 0. The function

(2.5)

rf(x) = 
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is the risk-aversion coefficient of  f


*** PropoSITION 2.3.  

(i).
Let X be bowhered and  MX = ║X║( = ess sup X  . If f is convex then

(2.6)

EX ( Hf(X) ( MX

(ii).
If r(x) = 0 ( x , then    f(x) = ax+b and Hf(X) = EX. 

 (iii).
Let fn be convex and rn be their risk-aversion coefficients. Then

(2.7)
rn ( (  ( 
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(X) ( MX ; rn ( 0 (uniformly on compact sets ( 
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*COROLLARY 2.4.  Let X ( 0 a bowhered r.v.

(i).
The  “Lp” and exponential principles have the limit behavior 

limp(( Hp(X) = lima((Hexp(a)(X) = MX. 

(ii).
Moreover  H1(X) = lima(0Hexp(a)​(X) = EX 

(iii).
The mappings p ( Hp(X) and a ( Hexp(a)(X) are increasing.

3. Utilities. Zero utility principle.

Definition. Let u  be a utility. Then the zero utility principle (ZUP) given by u is the function ((X) = (u(X) defined by

(3.1)

Eu(((X) – X ) = u(0)

Example If u(x) = -e-ax then (3.1) becomesEeaX = ea((X) ( ((X) = Hexp(a)(X) = 
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 is the exponential premium from (2.4).

The exponential principles are both standard and ZUP. 

Remark. Notice the lack of symmetry of (3.1). If we replace Eu(((X) – X ) = u(0) with Eu(X – ((X) ) = u(0) then the result will be different : ( = - ln(Ee-aX)/a = - LX(a)/a with LX(a) being the Laplace transform of X. 


*PROPOSITION 3.1. Any ZUP given by a concave utility u is fair and realistic.  . Moreover ((X) ( MX where MX = ess sup X. 

REMARK.  The condition “Eu(EX – X) ( u(0) for any X ( 0” is weaker then the concavity of  u.  One can get realistic principles with any functions, too. For instance if

u(x) = (x-1)1(-(,-1](x) + 2x1(-1,0](x) + x1[0,()(x) is not concave but the ZUP given by it is realistic since we can write u = u1+ u2 with u1(x)= x - 1 and u2(x) = (x+1)+(1. As u1 is affine Eu1(Y) = u1(EY) for any Y. Therefore u(EY) – Eu(Y) = u2(EY) – Eu2(Y) = u2(0) – E[(Y+1)1(-1 ( Y ( 0)] – P(Y > 0) ( 1 – 0 – P(Y > 0) = P(Y(0) ( 0

REMARK. A ZUP is in general not an affine premium.

But sometimes it is affine.


**PROPOSITION 3.2.  Let us denote h(t,() =  
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Suppose that the utility u has the property that if the solutions t of the equations h(t,() = 0 and h(t,() = 0 are the same then h(t,() = h(t,() for any t.

Then the ZUP (u is affine.

A sufficient condition for that is that h(t,() has the form ((t)*((() where „*” is a group operation on some subset of ( and (, ( are real valued functions.


*PROPOSITION 3.3.  The utilities u and au + b (a ( 0!) produce the same ZUP.


Definition. The utility u is normed if u(0) = 0 şi u’(0) = 1. 


For a normed utility the ZUP is the unique solution ( of the equation 

(3.3)
Eu(( – X) = 0


Definition. The risk-aversion coefficient of the concave utility u is
(3.4) r(x) = 
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***PROPOSITION 3.4. Let  un be concave utilities and rn be their risk-aversion coefficient. Let  X be bowhered and (n = 
[image: image9.wmf]n
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(X). Then
(i).
If rn ( (, then (n ( MX ;

(ii).
If rn ( 0 (uc), then (n ( EX .

**PROPOSITION 3.5 . Let  u be a concave utility. Then

(i).
(u(X + c) = (u(X) + c  ( c ( 0 (the ZUP is translatable);

(ii).
0 ( p ( 1 ( (u((1-p)X+pY) ( (1-p)(u(X) + p(u(Y) (The ZUPs are convex)


As a consequence (u(cX) ( c(u(X) for c ( 1 and (u(cX) ( c(u(X) for 0 ( c ( 1.

4. Comparaţie între primele standard şi cele utilitare.
Definition. A premium principle H is called translatable if H(X+c) = H(X) + c for any constant c ( 0.


**PROPOSITION 4.1. Let H be a standard principle of the form H(X) = f –1(Ef(X)) with f convex and increasing twice differentiable. If H is translatable then H is an exponential premium : H = Hexp(a) (accept the convention a = 0 ( Hexp(0)(X ) = EX )


As a byproduct : the only standard translatable principles are utilitary, too.


REMARK.
The standard principles do NOT have the property  (ii) from Proposition 3.5. One cannot say anything about H(2X) if one knows H(X). For instance, in the case of Lp-principles : they are norms, hence the equality Hf(cX) = cHf(X) holds. If we consider the exponential principles, they are both standard and utilitary hence we can apply Proposition 3.5 : Hexp(a)(cX) ( cHexp(a)(X) for c (1 . But iit very possible that Hf(2X) ( 2Hf(X), as we can see from the following


Example. Let f(x) = max(x,2x-2). Let X (with p = 
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1

. Then f(X) (
[image: image11.wmf]÷

ø

ö

ç

è

æ

-

p

p

1

0

6

therefore Ef(X) = 1.5 ; 2X ( 
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 ( f(2x) ( 
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( Ef(2X) = 3.5 ( Hf(X) = 1.5 . The same computations yieldHf(2X) = 2.75 ( 3 = 2Hf(X) . 


If one objects that maybe that cannot happen with twice differentiable utilities, we answer that


**PROPOSITION 4.2. 

(i).
Let fn : (0,() ( (0,() be convex increasing. Suppose that fn ( f. 

Then 
[image: image14.wmf]n
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(X) ( Hf(X) for any bowhered X.

(ii).
Let un : ( ( ( be increasing concave. Suppose that un ( u . 

Then 
[image: image15.wmf]n
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(X) ( (u(X) for any bowhered X .

In the proof one uses

**LEMMA 4.3. 

(i).
Let fn : I ( ( monotonic with I ( ( an interval. Suppose that fn ( f and that f is continuous. Then fn ( f uniformly on compact sets i.e. foe every a ( b such that (a,b( ( I it follows that limn ( (sup((fn(x) – f(x)( ; a ( x ( b ( = 0.

(ii).
Let fn : I ( J continuous and bijective with I and J intervals. Suppose that fn ( f and that f is bijective, too. Then fn-1 ( f –1.

5. The choice of a premium principle. Pro and contra exponential principles.
The exponential premiums are very atractive. They are affine, convex and translatable. Moreover, they are additive.

 Definition. A premium principle H is additive iff  H(X+Y) = H(X) + H(Y) for any two independent risks X şi Y. H  is convex iff H(pX+qY) ( pH(X) + qH(Y) for 0(p,q(1, p+q=1. Of course a convex fair premium has the property H(cX) ( cH(X) for c ( 1 since

H(X) = H(
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There is no connection beteween additivity and concexity. For instance the Lp principles are convex but not additive.The exponential principles are both. 

*PROPOSITION 5.1. The exponential principles are both convex and additive. (However, they are not subadditive, they are not seminorms)

Another “pro”  comes from the ruin problem.

Suppose that an insurer company has the constant risk-aversion coefficient r > 0. It is planning the initial capital u dedicated for an insurance contract where the customers have the distribution F. It does not knw the number of such type of customers, but it has reasons to believe that, if the bussiness starts, the number of claims arrived from the beginning (t0 = 0) until a moment t is a Poisson process of intensity ( denoted by N(t). (Cramer, Lundberg and Buhlmann campaigned for such a model – which they called the collective model – and which is mathematically appealing.). The total value of claims until t (the so called aggregate claim amount) will be St := (1+…+(N(t) where (j is the value of the claim no. “ j ” and has the distribution F. 

Suppose now that the random variables ((n)n are i.i.d. and light tailed, meaning that 

HExp(r)((n) ( (.

The insurer feels that it is fair that for this aggregate claim amount St he should receive a premium Ht = HExp(r)(St) = log E(exp(rSt)) / r . 

If we make the calculus we see that

**PROPOSITION 5.2. In the above conditions Ht = (t(m(r) – 1) / r

where m(r) = Eexp(r(1) is the m.g.f. of (n.
Then the evolution of his bussiness is described by the model

(5.1) U(t) = u + (t(m(r) – 1) / r – St 

The probability of ultimate ruin, denoted by ((u) is the quantity

(5.2) ((u) = P(U(t) ( 0 for some t)

One knows the Lundberg estimation

***PROPOSITION 5.3. Let  (1= E(n. In the light tailed model

U(t) = u + (t(1 (1 + () – St
the following estimation holds: 

(5.3)

((u) ( e-Ru

where R is the unique positive solution of the equation 

(5.4)

m(R) = 1 + R(1(1+()

Now we identify (t(m(r) – 1) / r = (t(1 (1 + (), we see that m(r) = 1 + r(1(1+().

Comparing with (5.4) and taking into account that the equation admits a unique positive solution it follows that r = R. Therefore it becomes very easy to find a (pesimistic) bound for the probability of ruin ( a “rule”)

(5.5) “If your risk-aversion coefficient is r and your initial capital is u then ((u) ( e- ru”

From it one can plan the necessary initial capital u if the company plans that ((u) ( ( : u should be greater than –log(()/r.

This rule (“collective rule”) implies the individual premium amount

(5.6)

H((n) = (1(1+() = (m(r) – 1) /r

which is greater than the premium HExp(r)((n) = [log m(r)] / r

Remark. Notice that H from (5.6) is NOT a fair principle. If (n = ( = const then H(() = (er( - 1) / r > (. It is a bit overcharged. 

The problem can be put in the opposite way: “I” has the initial capital u and he intends to use an individual exponential premium principle with the risk aversion r , but he does not know how to find a reasonable r. He accepts the classic Cramer-Lundberg – Buhlmann model and he knows (, the intensity of the claims. His problem is to find r in order to charge the customers with the premium HExp(r)((n). 

What he knows is that he wants ((u) ( (. 

From Lundsberg’s inequality (5.3) he finds the minimum tolerated R = -(ln()/u.
Then he finds r solving the eauation

 (5.3)
Hexp(r)(() = ((m((R) – 1)/R
(
ln m((r) =r((m((R) – 1)/R.

Critics of HExp
The fact that HExp(r)(cX) > c HExp(r)(X) can be interpreted as follows: the insured customer is encouraged to divide his claim into several fractions to be insured separatedly. If, instead paying the premium for X (i.e. H(X)) he will pay nH(X/n) he will spare money.

How much?

That depends on the risk aversion of (I).

Just remark that 

nHExp(r)(X/n)  = 
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 converges to EX if n ( ( . If he is smart enough he can fool the insurer !
 5’. Premiums defined using loss functions

This is another point of view.

Definition. Any function L : (2 ( [0,() such that

· L(x,x) = 0 

And

- the mappings h ( L(x,x+h) şi h ( L(x,x - h) are increasing sunt crescătoare for h( 0

is called a loss function. 

The Meaning of L(x,y)  is : 

L(x,y) = “How much do I lose if I replace the real value of x with my prediction  y ”

Examples. 

1. L(x,y) = (x-y(p, p ( 0. For p = 2 we have „quadratic loss function”. 

2. L(x,y) = (ehx-ehy(p with p ( 0, h ( 0

3. L(x,y) = (x – y)2ehx with h ( 0

Definition. Let L be a loss function and X ( 0 be a random variable. The number AL(X)v which minimizes the function f(t) = E(L(X,t)) is called the L- aproximant of X. Intuitively: if we replace the random variable X with the constant AL(X) the expected loss will be minimum.

It is by no means obvious that always such a number exist or, if exists, that it is unique. Exemples. 

**1. 
f(t) = E((X - t(p) . If p ( 1, f  is differentiable (f’(t) = pE((X-t(p-1sign(X-t))) and strictly convex so it has a unique minimum point. It is the solution of the equation

(5’.1)

E((X-t(p-1sign(X-t)) = 0.

 
In this case AL(X) is called the p-aproximant of X. When p = 2 clearly A2(X) = EX.

The case p = 1 is bad since the mapping L is not differentiable and the equation (5.1) (now it becomes E(sign(X-t)) = 0 ( P(X ( t) = P(X ( t) !) maybe has no solutions. A direct analysis of the behavior of the function f(t) = E(X-t ( points out that it has the minimum for t = Median(X) . Mediana lui X este locul where funcţia de repartiţie a lui X ia valoarea ½ sau cuantila de 50%. For p ( 1 it is even worse: the mapping f is neither convexă nor differentiable and, still worse, may have more minima. Look at the case X ( 
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has local minima at every t = xj.

**2. 
Now f(t) = E((ehX-eht(p). If Y = ehX, u = eht we find the function E((Y – u (p) . If p ( 1 the solution of (5’.1) is u = Ap(ehX) hence 

(5’.2)

AL(X) = 
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It is still true for p = 1. For p = 2 we find AL(X) = 
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. This is the exponential prremium HExp(h)(X) ! 

For small h (how small ??) we get the approximation 

Hh(X) ≈ 
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**3.
 f(t) = E((X – t)2ehX) = t2EehX – 2tE(XehX) . Easy:  tmin = AL(X) = 
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This time we got Esscher premium principle with the risk aversion coefficient h.

AL(X) ≈  
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 ≈ (EX + hEX2)(1 – hEX) ≈ EX + hVar(X).

The last is the Mean- Variance premium principle

**PROPOSITION 5’.1. Let f,g be two comonotonic functions (meaning: either both are increasing or both are decreasing) and let X be a random variable such that all the random variables f(X), g(X) and f(X)g(X) are from L1. Then

(5’.3)

E(f(X)g(X)) ( Ef(X) Eg(X)

**REMARK. The inequality (5.3) is natural: if f and g are comonotonic then f(X) and g(X) should be positive correlated! Byproduct: if X ( 0 and a,b > o then EXa+b ( EXaEXb (simply put f (x) = xa, g(x) = xb)

**CORROLARY 5.3. 
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 ( EX. Esscher’s principle is fair and realist 

II.  Credibility

1.
 Bayesian models

An insurer has a contract Un asigurator are un contract on many years. At the moments 1,2…,t, he paid the aggregate calim amounts X1,X2,…,Xt.

Can he use this history to improve his premium politics for the year t+1 ?

Let aside the problem of depreciation of the money. It can be solved by actualization.

The semi-mathematical problem is

“How should I modify the insurance premium h(X) based on my payoff history?”

 A better statement of the problem.

Assume that the distribution P(X-1 of the claim belongs to a class of distributions depending on an unknown parameter ( ( E. For instance X ( Poisson(() or X ( Binomial(n,p), or X ( Exponential(a). 
In the first case the family depends on a single parameter and in the second one it depends on: ( = (n,p).

The semimathematical question is “find the real (”.

The Bayesian approach: 

Consider ( a random variable itself and denote it by (. It means that  ( : ( ( E is a random variable assuming its values into a measurable space (E,E). 

For instance in the case of a Poisson  distribution or in the case of an exponential one E = (0,(); in the case of a binomial one, E = N((0,1( a.s.o.


We may have a belief about the distribution of the risk factor (. This is the apriori distribution of (.  It will be denoted by U. So U = P((-1. 

If the parameter ( assumes the value ( , then the distribution of our sample X should be Q((). This is the model. For any ( ( E , Q(() is a distribution on (t. It is the conditioned distribution of  X given that  ( = (. 

In short: Bayesian approach = apriori distribution + model + experiments

The idea: to get a better approximation of U according to the esperience. That will be the aposteriori distribution of (. 

Example 1. Suppose that ( ( U((0,1() and X ( Binomial(1,()t. Explicitly, the model is: if ( = p ( (0,1( , then P(X1=(1,…,Xt = (t) = pN(1,()(1-p)N(0,() with N(1,() = ((1(j ( t ((j = 1(( and N(0,() = ((1(j ( t ((j = 0(( = t – N(1,().  How does that affect the apriori distribution?


 Example 1’.Generalization. ( ( U(0,1) and X ( Binomial(n,()t for some known n Then P(X1=x1,…,Xt = xt) = 
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where S = S(x) = x1 + … + xt . 

Agree that  Q(() satisfies the measurability condition

(1.1)
For anyB ( B((t) the function ( ( Q((,B) from E to (0,1( is E - măsurabilă
In that case Q is a transition probability from (E, E ) to ((t, B((t)).

The reader should know the following facts, to be found in any standard handbook of ptobabilities:

1. 
If U is a probability on (E, E ) and Q is a transition probability from E to some other measurable space (F,F), then U (Q is a probability on E(F defined by the formula

(1.2) U (Q(C) = 
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or by the integration rule

(1.3)

[image: image29.wmf]ò

f

d(U ( Q) = 
[image: image30.wmf]òò

f

((,x)Q((,dx)dU((), f measurable bowhered

2.
If  Q(() is the distribution of X if ( = (, then the transition probability means Q the conditioned distribution of X given (: Q =P(X-1(( .

As a consequence we have

(1.3) P(X ( B ( ( ) = Q((,B) (P- a.s.)

Which, according to the definition of conditioned expectation means 

(1.4)
 E(Q((, B)1A(()) = E(1B(X)1A(()) = P(X ( B, ( ( A) ( A ( E, B ( F. 

3.
The distribution of the vector  ((,X) is U ( Q , i.e. P(((,X)-1 = U ( Q
4. 
The distribution of X este UQ defined as

(1.5)
UQ(B) = (U ( Q )(E ( B)   or in integral form 
[image: image31.wmf]ò
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One sees that the distribution of X is a mixture of dsitributions Q((). 

În Example 1., the distribution of X is U(0,1)Q for Q(() = Binomial(1,()t. Therefore

(1.6)

P(X = () = 
[image: image33.wmf]ò
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where ( ( Z2t and S = N(1,() is defined as in Example 1. The function ( is Euler’s ( defined as

((m+1,n+1) =
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As a consequence P(X = () = 
[image: image36.wmf])!

1

(

))!

(

!

+

-

t

S

t

S

.

În Example 1’ the difference is that the distribution of X is U(0,1)Q with

Q(() = Binomial(n,()t hence

(1.7’)
 P(X = x)  = 
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Now the dissintegration theorem says that any probability on a product of two Standard Borel spaces E(F can be written as a product between a probability on one of them – say F and a transition probability from it to the whole space. (Standard Borel means isomorpic with some Borel subset of (; one knows that any Polish space is Standard Borel)


In short : in any Bayesian approach U is the distribution on the parameter space of the distribution U (Q of the vector ((,X) formed from a random parameter ( and the sample X , which is a probability onE((t ; then the model Q(() is the distribution of the sample conditioned by ( (a transition probability from E to (t) and the second marginal, that one on (t is UQ , the distribution of the sample X. 

We can apply the dissintegration theorem to the second marginal, too. So there must exist another transition probability Q* , this time from (t to E such that U = Q*(UQ) . From a probabilistic point of view Q* is the distribution of ( conditioned by the sample X .

This is in Bayesian language the aposteriori distribution of ( after the experiment X. In Mathematical language, Q* is called the conjugate of Q. 

If, instead denoting the apriori distribution by U we denote it by U0, a more natural notation for Q* will be U1 (= U1(x) ). The meaning: Q*(x,A) = P(( ( A ( X = x) = U1(x, A). Then the procedure can continue: make another experiment, find U2 a.s.o. 

Sometimes there exist formulae to compute Q*.

The density hypothesis


Suppose that the distribution of (, denoted by U , has a density w.r. to some (-finite measure (. 

Moreover, suppose that Q(() has a density for w.r.to another (-finite measure, f(.

In that case one is able to compute the aposteriori density.

***PROPOSITION 1.1. Assume the density hypothesis. Namely assume that

(i).
U = u((, with ( some (-finite measure on  E;

(ii).
Q(() = q(()(( with ( some (-finite measure on (t
Then

(1.8)
P ( ((,X)-1 = f(,X ( (((() cu f(,X ((,x) = q((,x)u(()

(1.9) P ( X-1  = fX ( ( with  fX (x) = 
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(1.10) Q*(x) = q*(x)( (  with q*(x,() = 
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(Usually q* is denoted, more suggestive as f((X = x (() . It should be the density of ( if we know that  X = x ). Then (1.10) has a more intuitive writing: f((X = x (() = 
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Calculus for Examples 1. şi 1’. 

- 
For Example 1.:  E = (0,1(, ( = ( (măsura Lebesgue pe (), u(() = 1(0,1)((), ( = Card(Z2t) is the cardinal on Z2t, the density q(() of Q(() is q((,x) = (S(1-()t-S  with 

S  = S(x) =((1(j ( t (xj = 1((= x1 +…+ xt . 

Then 

-
f(,X ((,x) = (S(1-()t-S1(0,1)(()

-
fX (x) = 
[image: image45.wmf]ò
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q*(x,() = f((X = x (() = 
[image: image47.wmf])!

(

!

)!

1

(

S

t

S

t

-

+

(S(1-()t-S 

Conclusion: the aposteriori distribution on [0,1] of ( is a distribution (S+1,t-S+1 .

Meaning: after an experiment having as a result M  heads and N tails (M+N= t) our best guess about ( is that it has a ( distribution: the aposteriori density should be u1(() = (M+1,N+1 ((). 

-
For Example 1’.:  E, (, u are the same but ( = Card(Znt); 

· q((,x) = C(x,) (S(1-()t-S cu C(x) = 
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· f(,X ((,x) = C(x) (S(1-()t-S1(0,1)(()

· fX (x) = 
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(see (1.7’)

· q*(x,() = f((X = x (() = 
[image: image50.wmf])
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· Conclusion: the aposteriori distribution of ( is (S+1, nt-S+1.  
PHILOSOPHICAL REMARK.
What if we have a deep belief (a religion) that p = (? Then the Bayesian approach is useless . Suppose that our apriori distribution of ( is 

( ( 
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. Then  Q is a stochastic matrix with n rows (one for every () and 2t columns (one for each () : Q((j,x) = (jM(x)(1-(j)t-M(x) . 

Then 

E =((1,…,(n( ( (0,1(, 

( = Card( I ),

u((j) = pj,

( = Card(Z2t),

 
f(,X ((,x) = (jM(x)(1-(j)t-M(x))pj 

and

(1.14)

  f((X = x ((j) =
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In the particula case n = 1 (we AREURE that ( = (1) then we see that f((X = x ((1) = 1. Meaning: no matter of the experience we shall continue to believe that ( = (1 ! 

Possible explanation : the experiment itself is blind, in the absence of a model.

Example 2. An insurer has to deal with a contract formed from binomial risks. He knows that Xr ( Binomial(N, p), but he does not know neither N , nor p. He also knowas that these parameters do not change in time. To have an idea about what should be the best premium policy he has a history of what happenned before, X1,…,Xt. His experience makes him believe that N  and ( are independent and that N ( 
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and ( ( ((( for some density (:(0,1( ( (0,() . If he has no idea about  Dacă nu are nici o idee despre p- a highly unlikely thing -  his best apriori guess will be ( = 1(0,1)

So

E = N((0,1(, ( = (N,() , 

( = CardN((, 

( = (n,p), u(n,p) = (n((p) , (the apriori distribution)

q(() = q(N,() = Binomial(N,()t (the model!)

f(,X ((,x) = (n((p)C(x , ()pS(1-p)tn-S  cu C(x , () =C(x,n) = 
[image: image54.wmf]t
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Then the distribution of X is a mixture of binomials. So

(1.15)

 f(,X ((,x) = ((p)(nC(x , ()ptM(x)(1-p)t(n - M(x)) 

where M(x) is the average after t observations, tM(x) = x1 + … + xt . 

Let x* = max (x1,…,xt). As n ( x* ( C(x,n) = 0 we get

(1.16)

fX (x) = 
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(1.17)

f((X = x (n,p) =  
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(  in the uniform case f((X = x (n,p) =  
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Notice that if n ( x*, then  f((X = x (n,p) = 0. Funny how much mathematics for a common sense remark! 

The exact Bayesian estimator


Definition. If (:E ( ( is measurable then E(((()(X) is called the exact bayesian estimator of (((). 


Proposition 1.1. produce a computing formula for E(((()(X)

**PROPOSITION 1.2. Avem

(1.18)

E(((()(X) = 
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Now let us suppose that all the random variables Xr are i.i.d. for any given value of (. This the conditionally i.i.d. hypothesis. It is easy to see that in that case they are identically distributed, too. Let 

(*)
 ((() = E(Xr(() (it does not depend on r !)

pe the pure premium. This is the best guess we can do about Xr in the least quadratic sense.
The precise meaning is: among all the functions ((() , ((() is the best from the L2 point of view: ║Xr - ((()║22 = ║Xr - ((()║22 


Let now g(X) be defined as

(**)

g(X) = E(((()(X) .

In a Bayesian approach our problem is to find g(X). It is the best guess we can do about the pure premium ((() for the year t+1 if we want to take into account the history X1,…,Xt. 

***PROPOSITION 1.4. For any function f
E(f(Y)((,X) = E(f(Y)(()

As a consequence

(1.19)
E(f(Y)(X) = E(E(f(Y)(()(X)

**CorolLarY 1.5. If (Xr)1 ( r ( t  are conditionally i.i.d. given ( then

 E(Xt+1 ( X1,…,Xt) = E(((()(X1,…,Xt) = g(X)

We could compute  g(X) if we knewthe distribution of ( given X .

 An optimist scenario. 

In Example 1’ we know it: it is (S+1, nt+1-S . As Xr are binomialy distributed given ( (i.e. P(Xr = j(() = Binomial(n,()((j()  it is obvious that ((() = n(. Then g(X) = E(n((X) = nE(((X) . As the expected value of a random variable Y ( (m,n is 
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(1.20)

g(X) = 
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Let M = S/t be the average of the sample ( it is known that M is a good estimator for EXr if the r.v.s are i.i.d, NOT our case, they are not indepndent). Let also denote

(1.21)

m = EXr = E(E(Xr(()) = E(n() = n/2 

(recall that ( ( U(0,1)). Then (1.20) becomes 

(1.22)              g(X) = zM + (1-z)m , for z = 
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REMARK. (1.22) is very attractive. It easy to whererstand empirically. The pure premium should be a weighted average between our model (i.e. m) and the reality (i.e. M)  The coefficient z shows the weight of the reality. If t ( (, z ( 1, is better to believe in our experience. Whereas if t is small, it better to release on our theoretical model.


QUESTION. Is it true that always g(X) lies somewhere between m and M ? 

ANSWER. NO !

Example 3.. Suppose that ( ( U(0,1) and that Xr have the distribution Uniform((,(+1) Assuming the conditined independence we see that

E = (0,1(, ( = (, u(() = 1(0,1)(() (apriori)

Q(() = U((,(+1)t (the model !)

f(,X ((,x) = 1((,(+1)(x1) 1((,(+1)(x2)… 1((,(+1)(xt) 1(0,1)(() = 1A(x)(() where 


A(x) = (x1-1,x1) ( (x2-1,x2) ( …( (xt-1,xt) ( (0,1) 

= (x*-1,x*) ( (0,1) with  x* = x1(x2(…(xt , x* = x1(x2(…(xt 


fX (x) = ((A(x)) = ((x*(1) – (x*-1)+)+ 


f((X = x (() = 1A(x)/fX(x) , The distribution of ( given X is U(A(x))


Furtheron ((() = E(Xr(() = ( + ½   (the expectation ofUniform(a,b) is  (a+b)/2 ; in our case a = ( and b = (+1!) hence g(X) = E(((X) + ½  = ((x*(1) + (x*-1)+)/2 + ½  (since the distribution of ( given X is uniform, too! ) .

Finnaly we arrive at         g(X) = 
[image: image66.wmf]ï
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 On the other hand m = EX1 = E((() = ½ + ½ = 1. It is possible that g(X) not lie between m şi M: for instance, if t = 3, x = (1.1; 1.2; 1.9) then 

M = (1.1+ 1.2 + 1.9)/3 = 1.4 

g(x) = (1 + 1.9)/2 = 1.45. 

It is not true that 1 ( 1.45 ( 1.4

2.
 Buhlman’s credibility model


Let X be a sample of size t . The random variables  Xr , 1 ( r ( t are the aggregate yearly claim amount of an insurer. He guesses that the their distribution depend on a risk factor, (. He has a belief about the distribution of ( of the form  U = u ( (


Definition. Let us call a contract any vector ((,X)  where P((-1 = U and X = (X1,…,Xt) are random variables from L2 interpreted as being a history of the yearly aggregate claim amonunts at the years 1,2,…,t.

Let also (r(() = E(Xr (()

He wants to make a prediction about the next claim amount Xt+1 . Let us denote the past history by X. 

Accept that Xr are conditionnaly i.i.d. given (. Then (r(() are the same. Denote their common value by ((().

Then we know that E(Xt+1 ( X1,…,Xt) = E(((()(X1,…,Xt) = g(X) 

In short the model is

(2.1)
Q(() = F(()(t

or, exlicitly

(2.2)
P(X1 ( B1,….,Xt ( Bt (() = P(X1 ( B1(()…P(Xt ( Bt(() 

= F((,B1)….F((,Bt) ( Br ( B((), 1 ( r ( t 


Recall that if L is the set of all the measurable functions h with the property that that h(X) is in L2 then

(2.3)
║Xt+1 – g(X)║2 = min ( ║Xt+1 – h(X)║2 ( h ( L (
or 

(2.4)
E(Xt+1 – g(X))2 = min ( E(Xt+1 – h(X))2 ( h ( L (

PROBLEM. In most of realistic models, nobody can compute g .


Buhlmann’s idea: search for simplest h  of the form h(x) = c0 + (c, x(  such that the expectation E(Xt+1 – h(X))2 să fie minim. This time we have a finite dimensional problem of finite dimensions.


For, if we write h :(((t ( ( explicitly

D(c0, c) = E(Xt+1 – c0 – c1X1 – c2X2 - … - ctXt)2
the problem becomes

(2.5) Find c0, c such D(c0,c) = min

Now the problem is feasible. 

**THEOREM 2.1. If we accept the conditional i.i.d. hypothesis then h(X) is

(2.14) h(X) = (1-z)m +  zM 

where 

(2.18)

z = 
[image: image67.wmf]2

s

ta

ta

+

 , a = Var (((); s2 = E(Var(Xr(()) and m = E((().

Definition. The numer z is Buhlmann’s credibility coefficient.  

It is not a statistic because it depends on not observable parameters. 

How to estimate them?

Buhlmann’s idea: try to look at other independent contracts.

Suppose that 

-     a.  We have k independet contracts (Cj)1 ( j ( k with the same risk factors (j (i.e. (j are i.i.d.). Contract =a vector of the formCj  = ((j , Xj) . Suppose t is the same for all contracts

 Xj = (Xj,1, Xj,2, …, Xj,t). Let X denote the matrix (Xj)1(j(k
· b. The distribution P((j-1 = u ( (  does not depend on j. 

-      c. The model is the same in all the contracts. Within each contract, the variables are conditionally i.i.d. 


Then all the random variables (Xj,r)1(j(k , 1 ( r ( t are identically distributed (not independent, of vourse). Moreover the vectors Xj will be identically distributed, too since P(Xj-1 = UQt where  Q(()  is the common model, the distribution of X1,1 given (. 


Let also 
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Buhlsmann’s estimator of (((j) given by the observations X = (Xj,r)j,r . Precisely,  
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 is a function hj(X) of the form 

(3.5)

hj(x) = cj + 
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such that 

(3.6)

E((((j)– h(X))2 ( E((((j)– b0 –
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**PROPOSITION 3.2.

(i). E(Xj,t+1((Ci)1 ( i ( k) = E(Xj,t+1(Cj) = E((((j)(Xj) 


(ii). E(Xj,t+1(X) = E((((j)(Xj) = E(Xj,t+1(Xj)


**PROPOSITION 3.4.   Let H be a closed space of L2 such that

sp(X) ( H ( L2((,((X),P). Then

(3.7) PrH (Xt+1) = PrH (((())

How do we apply that in our case? We know that

 E(Xj,t+1(X) = E((((j)(Xj)  = E(Xj,t+1(Xj). Then, for any Hilbert subspace H of L2((,((X),P) we know that PrH (Xj,t+1) = PrH ((((j)). În particular, if H = sp(1,X) , then
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 - the metric projection on H of the random variable (j  - is the same with PrH (Xj,t+1).

Let Hj = sp(1,Xj) ( L2(((Xj)) ( L2(((X)) . The equality E((((j)(Xj)  = E(Xj,t+1(Xj) implies 


***THEOREM 3.5.  If we assume the hypotheses a., b., c. then

(3.8)
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 = (1- z)m + zMj

where Mj = (Xj,1 + Xj,2 + … + Xj,t) / t


How can we use that to estimate a,m and s2 ? 

***THEOREM 4.1. If we assume the hypotheses a,b,c then the statistic

(4.1) 
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is a non biased estimator for s2. Its variance is

(4.2)

Var(
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Moreover, the statistic M0 = 
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 is a nonbiased estimator for m

REMARK. Notice that the number of independent contracts matters more that the own history. 

***PROPOSITION 4.2. If we assume the hypotheses a,b,c then 

(4.3)

Var(Mj) = a + 
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***PROPOSITION 4.3. If we assume the hypotheses a,b,c then 
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**COROLLARY 4.4. The random variable

(4.5) 
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is a consistent (in k) estimator for z k ( ( ( 
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5. When Buhlmann’s estimator is the same with the conditioned expectation?
We are in the conditions of the first model. There is only a contract. So 

(5.1) P(X1 ( B1,….,Xt ( Bt (() =  Q((,B1)….Q((,Bt) ( Br ( B((), 1 ( r ( t

(5.2) Q(() = fX((=(( (
(5.3) P((-1 = u((
Recall that ((() = E(Xr(().  Then the exact bayesian estimator is

(5.4)
g(X) = E(((()(X) = 
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= E(Xt+1(X)
and Buhlmann’s one is

(5.5)
h(X) = Prsp(1,X)(Xt+1) = Mz + (1-z)m 
with 

m = EXr, M = (X1 + … + Xt)/t,  z = 
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, a = Var (((), s2 = E(Var(X1(())
Sometimes h(X) = g(X) . An example was studied at (1.20). It can be generalized.

Definition. The densitiesfX((=( form an exponenţial family if 
(5.4) fX(( = ((x) = p(x)e-(x/q(()

where the parameter space is E = [0,(). Assume that q(() is differentiable. Then the density of X is 

(5.6)
fX(( = ((x) = 
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with S = x1 + … + xt

Suppose that the density of u of ( has the form

 (5.7)
u(() = 
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 for some (,( ( [0,() and C((,() a norming constant

Then the aposteriori density is

 (5.8)
f((X = x (()= 
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meaning that it has the same form as the apriori density. We say that the family of these densities is a conjugated family.

***PROPOSITION 5.1. If the model is exponential, the apriori density has the form (5.7) and u(0) = u(() = 0  then g and h are the same. Buhlmann’s estimator = Conditioned expectation.

Example. Poisson model, exponential apriori density. 

6. Credibility for premium principles

Suppose that we have a loss function L and a history X . How is better to use this history to minimize the expected loss?
Principially, the problem is to define a conditioned L-aproximant. Its definition is based on the fact that a real random variable admits always a conditioned distribution with respect to a sub (-algebra (-algebră F. It means that there exist a transition probability Q from ((,F) to ((,B(()) such that the equality 

(6.1) P(Y ( B (F )(()  =  Q((,B) holds P-a.s.

Then we define AL(Y(F) – the conditioned L-approximant – as follows:

Suppose that AL(Y) is defined by a function A((), where ( is the distribution of Y. In that case we define 

(6.1)

AL(Y(F)(() = A(Q(())
Example 1. If L(x,y) = (x-y(p, p ( 1 , then for any p ( 1 Ap(Y) is the unique solution of the equation E((X-t(p-1sign(X-t)) = 0. În terms of distributions, A(() is the unique solution od the equation 
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Then Ap(Y(F) (() is the unique solution of the equation 
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Q((,dx) = 0. In terms of conditioned expectation, Ap(Y(F) is the unique solution t(()

(6.2)

E((Y-t(sign(Y-t)( F) (() = 0. 

Here ( is the distribution of Y and Q(() is the conditioned distribution of Y given F .


For  p = 2 we get A2(Y) = E(Y(F) and for p = 1 we get Median(Y│F). 


Example 2. If L(x,y) = (ehx-ehy(p with p ( 0, h (0 , then we already know that

 AL(Y) =  
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. For p = 2 we get condirioned exponential premium 

(6.3)

Hh(Y(F ) = 
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Example 3. L(x,y) = (x – y)2ehx with h ( 0, AL(Y) = 
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 = Esscherh(Y(F) is the conditioned Esscher premium.  From Corollary 5.3. it follows that 
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***PROPOSITION 6.1. Let L be a loss function with the property that AL(Y) does exist for any bounded risk Y . Then AL(Y(F) has the optimum property

(6.4)

E(L(Y,AL(Y(F ))(F ) ( E(L(Y,Z)(F )  for any F - mesurable Z 
The proof relies on the following

**FORMULA 6.2. Let Y be a real random variable, F  be a sub (-algebra of K , Q be the conditioned distribution of Y given F  , L : (2 ( [0,() be measurableand let Z be a F – measurable random variable. Then, foe almost all ( ( ( the following equality holds

(6.5)

E(L(Y,Z)(F )(() = 
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**COROLLARY 6.3. Let L be a loss function with the ptoperty that AL(Y) does exist for any bounded risk Y . Then 

(6.6)

E(L(Y,AL(Y(F )))  ( E(L(Y,Z) )  ( Z care este F - măsurabilă

Remark. The conditioned L-approximants answer the question: among all the F– measurable random variables Z which of then provide a minimum expected loss if we replace the real Y with the “prediction”Z ? 

Answer : Z = AL(Y(F )

In credibility theory F is generated by a random vector, the sample X. In that case one writes AL(Y(X ) instead of AL(Y(((X)). This random variable has the optimum property 

(6.7) E(L(Y,AL(Y(X))(X ) ( E(L(Y,g(X))(X )  ( g:(t ( (  bounded measurable 

As a consequence

(6.8) E(L(Y,AL(Y(X))) ( E(L(Y,g(X)))  ( g:(t ( (  măsurabilă
Now we can say somtehing about the

QUESTION. How can we use the accumulated history untill t to predict Y = Xt+1 ?

ANSWER. The best is to compute AL(Xt+1(X) .

That is the main idea in credibility. 

Sometimes it is feasible. 

***COROLLARY 6.4. Suppose that (Xr)r are conditionally i.i.d. given ( = (. Let t be a positive integer and X = (Xr)1 ( r ( t . Let also h ( 0 . Then the conditioned exponential premium is

(6.9)

HExp(h)(Xt+1(X) 

=
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and the Esscher conditioned premium is

(6.10)

Esscherh(Xt+1(X )
=
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where (h(() = 
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There is a technical proble. For exponential premium principles one cannot compute linear Buhlmann type estimators. However, that is possible for Esscher premiums.

****THEOREM 6.5. Suppose that (Xr)r are conditionally i.i.d.  given ( = (. Let t be a positive integer and let X = (Xr)1 ( r ( t . 

Then the optimum linear estimator h(X) for Esscherh(Xt+1(X ) is

(6.11) h(X) = z*M + (B – z*)C


where M = (X1 + … + Xt)/t iar

(6.12) B = 
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(6.13) C = 
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(6.14) ((() = E(Xr (()
(6.15) Esschh(X1(() = 
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where asteriscul înseamnă că media se calculează faţă de probabilitatea ((U where ((() = const(mh(()
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