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               II.
Orderings between risks

               II. 1.
Unidimensional Stochastic dominance

Are there situations when all decision-makers (adepts of PEU) agree that X is worthless than Y?

Let v be a utility and let  “X (v Y”  denote the fact that Ev(X) ( Ev(Y). 

The question is: do there exist X and Y such that X (v Y for any utility v for which both X and Y ( Dom(v) ?

In the insurance business the problem states as follows: an insurer has to decide between the risks  X and Y (this times they are positive r.v.’s !) which is riskier. The insurance sompanies may have different policies accorfromg to insurance premiums, but this is clear: if they are adepts of PEU , then X ( Y (a.s.) should imply that the insurance premium for Y should be greater. 


From this point of view a utility is a function u (-(,0] ( ( with the meaning 

(1.1) u(-X)  is the loss of the company if X happens. 

Then X is preferred to Y from the point of view of u iff 

(1.2) X (u Y  ( Eu(-X) ( Eu(-Y)

Remark that “(u” is a relation between the distributions of  X and Y, because

(1.3)
X (u Y  ( 
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where P(X-1 and P(Y-1 are the distributions of X and Y. If ( and ( are distributions then

(1.4) ( (u (  ( 
[image: image3.wmf]ò

-

)

(

x

u

d( ( 
[image: image4.wmf]ò

-

)

(

x

u

d(
Sometimes it is easier to work with the function w:[0,() ( ( defined as w(x) = - u(-x)

Then

(1.5) ( (w (  ( 
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We shall call w  a penalty. The meaning of w(X) : the loss inflicted to the insurere if X happens. 

Definiţion. Penalty is any increasing w:[0,() ( (+ .

Definition. Stochastic dominance. Let X and Y : ( ( ( be two radom variables with the distributions ( = P(X-1 and ( = P(Y-1. We say that X is stochastically dominated by Y (or, in terms of distributions, that ( is riskier  than () iff 

(1.6) Ew(X) ( Ew(Y) ( w: I ( (+ penalty

In that case we write X(stY or ((st(. 

Remark. If X and Y are thought as lotteries the meaning of “X (st Y” is that any decision-maker adept of PEU  should agree that Y is preferable to X. 

**PROPOSITION  1.1. The stochastic dominance is an order relation. Moreover

(1.7)

X (st Y  (  FX ( FY ( 
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Properties of the stochastic dominance


*Property 0. Stability w.r.t. scaling. If X is a r.v., (  is a real number and ( > 0 , then the r.v. Y = ( + (X  is obtained from X  by means of scaling. The property is

(1.8)

If X (st Y then ( + (X (st ( + (Y.


*Property 1. Stability w.r.t. convolution. 

(1.9)

If (1(st(1 and (2(st(2 , then (1*(2 (st (1*(2. 

Or, in terms of random variables

(1.10) If X1(stY1 , X2(stY2 , X1 independent on X2 and Y1 independent on Y2 , then

 X1+X2 (st Y1+Y2 .

*Property 2. Stability w.r.t. weak convergence 

(1.11) (n (n(( ( , (n (n(( ( then   (n (st(n ( n ( ((st(.

Or , in terms of random variables

(1.12)  Xn
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Y,Xn(stYn for any n ( X(stY.

**Property  3. Stochastic dominance versus usual order 

(i).
If X and Y are two random variables such that X (st Y , then there exist versions of X and Y (maybe on another probability space) denoted by X’,Y’ (versions means X ( X’, Y ( Y’ ) 

such that X’ ( Y’ (a.s.)

(ii).
If  X has a continuous distribution, then there exist on the same probability space a version of Y, denoted by Y’, such that X ( Y’ (a.s.)

(iii).
If (Xn)n and (Yn)n are two sequences of r.v.’s such that Xn (st Yn ( n then there exist another sequence of independent random variables X’n and Y’n which are versions of Xn and Yn such that X’n ( Y’n ( n. 

Remark. In general one cannot find good versions on the same probability space. For instance if ( = (1,2,3(, K = P((), P((1() = p1, P((2() = p2, P((3() = p3 and X = 1(1(, Y = 1(2(
Then  p1 < p2 < p3 
(
 X (st Z since FX = (1-p1)1(0,1) + 1[1,() ( (1-p2)1(0,1) + 1[1,() = FY . However, for no version Y’ of Y on ( is possible that X ( Y (a.s.).

Indeed, on the space ( the distribution of a random variable uniquely determines the random variable. Simply there cannot exist different random variables with the same distribution.  

If, for instance, Y’ =
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, then P(Y’-1 =p1(x + p2(y +  p3(z and conversely 

if P(Y’-1 =p1(x + p2(y +  p3(z. then Y’ =
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*Property 4. Stability w.r.t. mixtures.
Mixture  means the following thing: suppose that we have a family of distributions on the real line, denoted by (Q(())((( where ((,T) is a measurable space and the mapping ( ( Q(()(B)  is measurable for any Borel set B (Such a family is called a transition probability from probability de trecere ( to (; the main concept of statistics) . Any probability of the form (Q  is called a mixture of Q, Here ( is a probability on (, and (Q is defined by 

(Q(B) = 
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For instance, if ( = ½ ((( + (() then (Q =  ½ (Q(()+ Q(()) 

How do mixtures come in insurance?.

Suppose that a car insurer has a portfolio of owners of cars of types (1,…,(n ; let Q((j) be the distribution of claims Xj for the cars of type (j and let pj be the probability that an insured has a car type (j . The total amount of claims will be

X = 
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where Aj is the event  “the ensured car is of type (j”. If we agree that the events Aj are independent on Xj then  the distribution of X is P(X-1 = 
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which is a mixture of Q. 
*PROPOSITION 1.2. Assume that Q and R are transition probabilities de from ( to (. If Q(() (st R(() ( ( ( ( then (Q (st (R ( ( probability on (.

Demonstraţie. Este imediată. Let u o utility. Then 
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Bayesian Statistics. Monotone Models  

In Bayesian Statistics it is assumed that the distribution of a r.v. X depends on an unknown parameter ( ( ( which itself is a random variable. The goal of parametric statistics – to find “the real (” is rejected as nonsensical and replaced with “hoe the distribution of ( changes after an experiment ??”.

Formaly, ( has an apriori distribution (the belief of the experimenter) denoted by (. If ( assumes the value x, then ar avea valoarea x, Then X would have the distribution Q(x) (many authors denote it by Qx !). This is the theoretic model. The model is a transition probability Q from ( to (n (sau, mai general, la (n se numeşte modelul teoretic.

After the experiment, the random vector X has the distribution (Q. Taking it into account one finds the aposteriori distribution.

QUESTION. Is it true that (1 (st (2 ( (1Q (st (2Q ?

ANSWER. If the question makes sense, NO!

Definition. The model Q  is  monotonic if  (1 (st (2 ( (1Q (st (2Q. 

If u is a function, then Qu is defined as Qu(x) =
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**PROPOSITION 1.3.  The following assertions are equivalent for a model

 Q(x) , x ( I, I ( ( interval: 

(i).
Q is monotonic;

(ii).
 ( x ( x’ ( Q(x) (st Q(x’)

(iii).
For any utility u the function x ( (Q u) (x) is not decreasing

(iv).
Function x ( Q(x,(a,()) is not decreasing for any a ( (
Property 5. For positive risks the stochastic dominance is stable w.r.t. compounfromg. Definition. Let ( = ((n)n be a sequence of positive i.i.d.random variables and let N be a r.v. assuming non negative integer values, independent of (.The meaning of ( is that of a counter. It counts the number of some events. Then the r.v. S(,N defined as 

(1.13)

S(,N = 0 if N = 0 and S(,N = (1 + (2 + … + (N if N ( 1 

is called the compounfromg of ( by N. If N is a Poisson counter, then S(,N is called a “Poisson compound”.


When the compounfrom is used in insurance? An insurer has n customers. N of them have claims; N is a counter. The aggregate claim amount is S(,N . 

Precise statement.

**PROPOSITION 1.4.. Let ( =((n)n , ( = ((n)n be two sequences of i.i.d. r.v.’s. Suppose that (n (st (n ( n and that N (st N’ , where  N is independent on  ( and N’ is independent on (.

Then S(,N (st S(,N’ 

QUESTION. What if N is not independent on and (? Is it still true that 

(n (st (n for any 
(
 S(,N (st S(,N ? 

ANSWER. NO! 

Let ((n)n , ((n)n  be i.i.d. Bernoulli distributed, N1= min(n│(n= 0(, N2= min(n│(n = 1( and let  N =min(N1(N2) . Then S(,N = N - 
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. The second random variable can assume only the values 0 or 1 while the first one can assume any value. Even if (n (st (n ( n the first one cannot be stochastically dominated by the second one. Rather the contrary. 

Property 6.The stochastic dominance is invariant w.r.t. maximum and minimum.

Precisely

**PROPOSITION 1.5. Let Xj,Yj j = 1,2  be r.v.’s. Suppose that

(i). X1 (st Y1 , X2 (st Y2 

(ii). X1 and X2 are independent and Y1 and Y2 are independent.

Then
 X1(X2 ( Y1(Y2 şi X1(X2 ( Y1(Y2
Remark. The statement is false in the absence of independence. For instance, if X1 and X2 are i.i.d. then clearly X1 (st X1, X1 (st X2 but it is not true that X1(X1 (st X1(X2 . Or, if U1 ( U(0,1) (hence 1 – U1 has the same distributuion) and U2, U3 are independent and distributed as U(0,2), then U1 (st U2, 1 – U1 (st U3 but max(U1, 1 – U1) is not stochastically dominated by U2(U3. 

Property 7. Stochastic dominance implies ordering among selling and purchasing prices.

Precisely 

**PROPOSITION 1.6. If X (st Y then pv(X.a; u) ( pv(Y.a; u) and pc(X.a; u) ( pc(Y.a; u) for any utility  u and initial wealth a.

GENERALIZATION
**PROPOSITION 1.7.  Let Xj, Yj , 1 ( j ( n be independent. Let f:(n ( ( be increasingin the sense that xj ( yj ( 1 ( j ( n ( f(x1,…,xn) ( f(y1,…,yn).  Suppose that că Xj (st Yj (1 ( j ( n. Then f(X1,…,Xn) (st f(Y1,…,Yn)

Maximal variables and stochastic domination.

Let ((n)n be i.i.d. r.v.’s and S0(() = 0 , Sn(() = (1+(2+…+(n. 


The sequence

(1.13) Ln(() = max(S1((), S2((),…,Sn(())

Is the maximal sequence of ( = ((n)n
**PROPOSITION 1.8.  Let ((n)n and ((n)n be two sequences of i.i.d.r.v.’s. Suppose that

(1.14)
(n (st (n ( n


Then Ln(() (st Ln(() ( n ( 1

2. Examples

2.1.
*B(1, p1) (st B(1, p2)  ( p1 ( p2 

2.2         *(0 (st ( for any distribution ( on (+ 

2.3.       ** m ( n , p1 ( p2 ( B(m,p1) (st  B(n,p2). 

2.4.       **   If 0 ( a ( b , then Poisson(a) (st Poisson(b) .

2.5 .      ** p1 ( p2 ( Geometric(p2) (st Geometric(p1) , Negbin(n,p1) (st Negbin(n,p2)

2.6.       (i).       * 0 ( a ( b ( eb (st ea ,Gamma (n,b) (st Gamma( n,a)

(ii).       **0 ( ( ( ( , a >0 ( Gamma((,a) (st Gamma((,a)

(iii).     ***N((1,(12) (st N((2, (22) ( (1 ( (2 , (1 = (2.

(iv).     **If Xj have the densities fj , j = 1,2 and for some c (( it is true that

 x ( c ( f1(x) ( f2(x) but x > c ( f1(x) ( f2(x) then X1 (st X2 .(one intesection of the densities implies stochastic dominance)

2.7.
Monotonic models: 

· **Q(x) = Poisson(x) (x ( 0; prin convenţie Q(0) = (0);

· **Q(x) = Gamma(x,a), x ( 0; prin convenţia Q(0) = (0;

· **Q(x) = Exponenţial(1/x) ; convenim că Exponenţial(() = Q(0) = (0;

· **Q(x) = Binomial(n,f(x)) where f:[0,() ( [0,1] este sincreasing

· **Q(x) = Negbin(n,f(x)) where f:[0,() ( [0,1] este desincreasing

Hint.  Proposiion 2.3 (ii): check that x ( x’ ( Q(x) (st Q(x’).

2.8. Convolution of monotonic models is monotonic.

Precisely: 

**If Q1 and Q2 are monotonic then Q(x) := (Q1(Q2)(x) is also monotonic.
2.9. Product of monotonic models is monotonic.
Precisely

 

**if Q1, Q2 are monotonic then Q1Q2  is monotonic too, where 

Q1Q2(x1, A3) = 
[image: image22.wmf]ò
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2.10. The negative binomial model is a product between an exponential model and a Poisson one, hence it is monotonic too.

Precisely

**If Q1(x) = Exponenţial(1/x) and Q2(x) = Poisson(x) then (Q1Q2)(x) = Negbin(1,
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2.11. It is possible that N (st N’ but SN is not dominated by SN’
Let (n ( 
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and Nj = inf(n│(n = j(, j = 0,1,2 . Then Nj ( Geometric(pj). Let Xj = (1 +…+
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. If  p = 1/3 there is no domination. 

2.12. **Intersection of the densities in a single point implies stochastic domination. Let ( be a measure on the real line and ( = f((, ( = g((. Suppose that there exists a number a such that

 x ( a ( f(x) ( g(x) and x ( a ( f(x) ( g(x). Then ( (st (
Otherwise written the hypothesis is that  (f(x) - g(x))(x – a) ( 0 ( x ( (.

Byproduct. 0 ( a ( b ( Poisson(a) (st Poisson(b)

2.13. **Psudoinverse and stochastic domination. Let  (,(  be two distributions on the real line and F = F(, G = F( . Define (F,G = G+(F, with G+(y) = inf G-1((y,()) = sup G-1((-(,y]) the pseudoinverse of G. Then

 ( (st ( ( (F,G(x) ( x ( x.

II. 2.
Convex and concave dominations 
1. Definitions
What can be said about two lotteries X and Y with the property that all the risk-seeking deisin makers DM agree that X is less attractive than Y? 


In other words Eu(X) ( Eu(Y) for any convex u.


Definition. Let X and Y be two lotteries. We say that Y dominates X in the increasing convex sense if

(1.1)

Eu(X) ( Eu(Y) ( u:( ( ( increasing convex

We shal denote this fact by “X (icx Y” . Other used notations are “X (ra Y” or “X (SL Y”.

Or, in  terms of distributions: 

(1.2)
( (icx (  ( 
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Example. Suppose that E(Y(X) ( X. Then  Ew(Y) = E(E(w(Y)(X)) ( E(w(E(Y(X))) (Jensen’s inequality) ( Ew(X) (since E(Y(X) ( X and w is increasing. 

Consequence:
E(Y(X) ( X 
(
 X (icxY. 


Remark. Of course X (st Y  ( X (icx Y. The first relation means “All the DMs agree that Y is better than X ” and the second means “All risk-seeking DMs agree that Y is better ” . Mathematically, the first relation means Ew(X) ( Ew(Y) for any  utility w and the second means Ew(X) ( Ew(Y) for convex utilities. 


Remark. Let us write the relation Ew(X) ( Ew(Y) as Eu(-X) ( Eu(-Y) with u(x) = - w(-x). Then u is a concave utility. If X and Y are non negative and are interpreted as claims for a risk-avoifromg insurer, the fact that X (icx Y is to be whererstood as “Y is more dangerous than X” or “more riskier” and deserves a greater insurance premium. 


Particular case: of “X (icx Y” : when EX = EY . Then we say that X is convex dominated by Y and write “X (cx Y” (“cx” from convex !)

Thus X (cx Y  ( X (icx Y and EX = EY 

Or, in terms of distributions, we write “ ( ( cx (”.

Notice that X (cx Y ( ((X) ( ((Y) (since (2(X) = EX2 – (EX)2 ( EY2 - (EX)2 ). That is not true if we replace “( cx” with “( icx”(for instance if X = 1A and Y = 1)

2. Equivalences
THEOREM 2.1. Let X,Y two random variables. The following assertions are equivalent:

(i).
X (icx Y;

(ii).
E((X-a)+) ( E((Y-a)+) ( a ( (;

(iii).
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(iv).
There exist (maybe on another probability space) two versions of X and Y  - denoted by X’ and Y’ -  such that E(Y’ ( X’ ) ( X’

Proof. 

* (i) ( (ii)

** (ii) ( (iii). Use the formula E((f(X)– f(a))1(X>a))  = 
[image: image33.wmf]ò

¥

>

a

t

X

P

t

f

)

(

)

(

'

dt for f(x) = (x-a)+

***(ii) ( (i)

** (iv) ( (i). Jensen 

****(i) ( (iv) Highly non trivial. A consequence of 

THEOREM CFM (Cartier – Fell – Meyer) (Original proof in Cartier, P., Fell, J.M.G., Meyer P.A. 1964, Comparaison des mesures portees par un ensemble convexe compact, Bull. Soc. Math. De France 92, p. 435 – 445. ) Particular statement in our case:

Let (, ( be two distributions on the real line. Let C be a cone of continuous functions closed w.r.t. uniform convergence (i.e. un ( u uniformly, un ( C ( n ( u ( C) and to the max operation (i.e. u,v ( C ( max(u,v) ( C) with the property that

 w ( C ( 
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d( . Then there exist a transition probability Q from ( to ( such that

(2.4)
(Q = ( and w ( C ( w ( Qw.


(in our case C is the cone of increasing convex functions . Notice that

(2.10)
E(f(Y’)(X’)(() = 
[image: image36.wmf]ò
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REMARKS. 1. The theorem CFM guarantees the existence of good versions for X and Y on the space (2 .

2. From the point of view of a reinsurer the equivalence (i) ( (ii) is illuminating. It says that, if the reinsurance is based on the principle “Stop at loss” and X (icx  then the reinsurance premium for should be smaller that the one received from Y. 

About “( cx “


***THEOREM 2.2. The following assertions are equivalent

 (i).
X (cx Y

(ii).
Ew(X) ( Ew(Y) ( w convex (not necessarily increasing)

(iii).
There exist versions of X and Y (on some other probability space) denoted by X’,Y’ such that E(Y’(X’) = X’

A famous sufficient criterion used to check the increasing convex dominance. The Karlin – Novikov criterion of the intersection, 1966 or Ohlin’s Lemma (cc. Asmussen):

***PROPOSITION 2.3. Let X,Y be two random variables from L1. Suppose that EX ( EY and that there exist c ( 0 such that 

(2.12)
FX(x) ( FY(x) if  x ( c  and  FX(x) ( FY(x) if x > c

Then X (icx Y

Example when Karlin-Novikov criterion works. Let M be the family of those risks X with the property that

(() EX = m 

(() 0 ( a ( X ( b. 

Let X1 = m and X2 ( 
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 where p+q = 1, pa+qb = m.  Then X1 (icx X ( icx X2 for any X ( M. Meaning: if the only informations about X are the its expectation m and its range [a,b] then the insurance premium for X2 is an overestimation of the insurance premium for X.  

3. Properties of  “(icx”

**Property 1. Invariance wrt convolutions. If (j (icx (j , 1(j(n , then

(1*(2*…*(n (icx (1*(2*…*(n . Or, in terms of random variables : if (Xj)1(j(n, (Yj) 1(j(n   are independent and Xj (icx Yj then X1 + X2 + …+ Xn (icx  Y1 + Y2 + …+ Yn .

Remark. The “icx” dominance is NOT invariant wrt weak convergence. For instance if (n = (1 and (n =(1-
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(0 then (n ( cx (n the relation does not hold for limits. 

For: (n ( (1 and (n ( (0 and (1 is NOT (icx than (0 .

*Property 2. Invariance wrt mixtures. If Q1, Q2 are two models and Q1(x) (icx Q2(x) ( x

then  (Q1 (icx (Q2
***Property 3. Invarianve wrt compounfromg. Let ( = ((n)n be  i.i.d. and nonnegative and let N1, N2 be two counters independent on (. Suppose that N1 (icx N2 . Let X = 
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Even more general: let ( = ((n)n , ( = ((n)n be two sequences of i.i.d. nonnegative random variables. Let N1, N2 be two independent counters (on ( and (). Let X = 
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(3.1) (n (icx (n ( n,  N1 (icx N2  ( X (icx Y (icx Z 

Conditionnaly Poisson counters


***PROPOSITION 3.1. Suppose that Nj are distributed as Poisson((j) (j = 1,2). Then

(3.10)
(1 (icx (2 ( N1 (icx N2

**COROLLARY. Invariance wrt Poisson compounfromg.


Let ( = ((n)n be a sequence of i.i.d. nonnegative r.v. Let  (Nj,(j) be independent on  ( such that the distribution of Nj is Poisson((j). Let Xj = (1 + (2 + … + 
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(3.12) (1 (icx (2 ( X1 (icx X2 

**Property 5. Invariance w.r.t. maximum

Let Xj , Yj , j = 1,2 be random variables such that X1 is independent on X2 and Y1 is independent on Y2. Then Xj (icx Yj j = 1,2 ( X1 ( X2 (icx Y1 ( Y2 

Remark. The convex dominance is NOT  invariant wrt minimum.

If X1 = X2 = 1 and Y1, Y2 are independent and distributed as ((0 + (2)/2, then Xj (icx Yj but X1(X2 = 1 is NOT dominated by Y1 ( Y2 ~(3(0 + (2)/4 since E(X1(X2) – 1 and E(Y1(Y2)= ½ 

GENERALIZATION

**PROPOSITION 3.2. Let X = (Xj)1(j(n, and Y = (Yj)1(j(n be independent. 

(i).
Let f : (n ( ( be convex such that f(X), f(Y) ( L1. Then

 Xj (cx Yj  ( 1 ( j ( n 
(
f(X) (icx f(Y)

(ii). Let f : (n ( ( be convex and increasing such that f(X), f(Y) ( L1. Then

 Xj (icx Yj  ( 1 ( j ( n 
(
f(X) (icx f(Y)

Special case: f(x1,…,xn) = x1(x2(…(xn. Property 5.

Conditioning
**PROPOSITION 3.2’. Let Zj = (Xj,Yj)1(j(n be independent vectors and let f:(n ( ( be convex.

(i).
If E(Yj(Xj) = Xj ( j then E(f(Y)(f(X)) ( f(X)

(ii).
If E(Yj(Xj) ( Xj ( j and f is not decreasing then E(f(Y)(f(X)) ( f(X)


GENERALIZATION
**PROPOSITION 3.2”. Let (X(j))1 ( j ( n be n  independent martingales. Let f : (n ( ( be convex. Then the sequence Y = f(X) given by  

Yk = f(Xk(1),…,Xk(n))

is a submartingale

If (X(j))1 ( j ( n are only submartingales, the assertion remains true provided that f is convex and not decreasing

As a consequrnce the maximum of n independent submartingales is a submartingale.

THE MAXIMAL SEQUENCE

**PROPOSITION 3.3. Let (Xn)n be a sequence of independent random variables. Let Mn(X) the maxim of the sums X1 + … + Xk for  1 ( k ( n

Let ((n)n and ((n)n be i.i.d. Suppose that
(n (icx (n ( n


Then Mn(()
(icx 
Mn(()

4. 
The concave domination   “(ico”
The increasing concave domination is the risk – avoifromg analog of the convex domination. 

Definition. Let X,Y be two random variables and let (, ( be their distributions. Let also F, G be their distribution functions. We say that X is increasing concave dominated by Y (and denote that fact by X (ico Y ) iff

(4.1) Eu(X) ( Eu(Y) ( u : ( ( ( concave utility

If (4.1) holds for any concave function we say that X concave dominated by Y. 

In terms of ditributions

(4.2) ( (ico ( (
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Intuitively: X (ico Y means that any risk avoifromg DM agrees that Y is better than X.

**PROPOSITION 4.2.1. The following assertions are equivalentfor X, Y ( L1:

(i).
X (ico Y ;

(ii).
pv(a,X;u) ( pv(a,Y;u) ( a ( (, u concave utility ;

(iii).
pc(a,X;u) ( pc(a,Y;u) ( a ( (,  u  concave utility.


There is a clear duality between  “(icx” and “(ico” :

*PROPOSITION 4.2.2. X (ico Y  (  - Y (icx – X  şi  X ( co Y  (  - Y ( cx – X
Or, in terms of distributions


( (ico ( ( (( s-1 (icx (( s-1 and ( ( co ( ( (( s-1 ( cx (( s-1 with s(x) = - x, s: ( ( (
The analog of the “(icx”
***PROPOSITION 4.2.3. The following assertions are equivalent

(i).
X (ico Y
(ii).
E(X(a) ( E(Y(a) ( a ( (
(iii).

[image: image50.wmf]ò
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(iv).
There exist versions of X and Y, namely X’ ( X. Y’ ( Y such that E’(X’(Y’) ( Y’
QUESTION. If X (icx Y and X (ico Y does it result that X (st Y? 

ANSWER. NO! See Theorem 4.3.1. 

**COROLLARY 4.2.4. 

( ( icx (, (ico (
     (
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[image: image53.wmf]ò

¥

a

(F((t) - F((t))dt ( 0 ( a ( (.

**REMARK. On the contrary, X ( cx Y and X ( co Y does imply that  X ( Y. 

Examples.  

(i). 
*p(0 + (1-p)(1 ( icx (a ( p(0 + (1-p)(1 ( st (a ( a ( 1


*p(0 + (1-p)(1 ( ico (a ( a ( q

*(a ( ico p(0 + (1-p)(1 ( (a ( st p(0 + (1-p)(1 ( a ( 0


*(a ( icx p(0 + (1-p)(1 ( a ( q
(ii).
A bit more involved


**½ ((0 + (1) ( icx p(0 + (1 – p)(a ( a ( 1 ( 
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**½ ((0 + (1) ( ico p(0 + (1 – p)(a ( a ( 
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**½ ((0 + (1) ( st  p(0 + (1 – p)(a ( a ( 1 , p ( ½


Notice that on these examples it is true that ( (ico (, ( ( icx ( ( ( ( st ( !

4.3. An example when Karlin-Novikov criterion is powerless. Monotone sequences of distributions.

***THEOREM 4.3.1. 

Let (n = Uniform((0,
[image: image56.wmf]n

n

n

n

1

,...,

2

,

1

-

() and (n = Uniform((
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(). Then

(i) (n (icx (n+1 ( n , (n+1 (icx (n ( n şi (n (icx Uniform(0,1) (icx (m ( m,n positive integers.

(ii)  Moreover (n ( Uniform(0,1) and (n ( Uniform(0,1).

(iii)  The assertion (i) remains true if we replace “(icx” cu “(ico”. 

(iv) However, there is no stochastic dominance: it is NOT true that (n (st (n+1 or (n (st (n+1 

The criterion Karlin-Novikov is powerless since the distribution functions of (n and (n+1 do intersect in many points. An even more interesting example

***THEOREM 4.3.2. Let (n = Uniform((0,
[image: image58.wmf]n
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(). Then ((n)n is decreasing in the  “(cx” sense , (i.e. (n+1 (cx (n ( n ( 1) and increasing in “(co” sense (i.e. (n (cx (n+1 ( n ( 1)

4.4. Martingales and convex domination

THEOREM 4.4.1. (Strassen, 1965). Let X = (Xn)n be a sequence of random variables from L1 and let (n be their distributions. Then

(i).
**If X is a submartingale then (n (icx (n+1 ( n; if X is supermartingale, then (n+1 (ico (n

(ii).
**If X is a martingale then (n ( cx (n+1  ( co (n ( n ;

(iii).
**If X is a converse martingale then (n+1 ( cx (n  (co (n+1 ( n;

(iv).
****The converse hold too: if ((n)n is a sequence of distributions on the real line with the property that (n ( icx (n+1 ( n (respectively (n ( cx (n+1) ( n) which have finite expectation  (meaning that 
[image: image59.wmf]ò

(x(d(n(x) ( ( ( n) then there exist a probability space and a submartingale (respectively a martingale) such that P(Xn-1 = (n. 

**COROLLARY 4.4.2. Let ((n)n be i.i.d. from L1  and sn = 
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Then sn+1 ( cx sn (co  sn+1.

REMARK. The meaning is that the average is less riskier than any of its components. A risk avoifromg investor should have a diversiLetd portfolio

**GENERALIZATION. For any convex combination p = (p1,…,pn) and i.i.d. random variables ((j)1(j(n the dominance p1(1 + …+pn(n ( cx (1 holds. 

A useless result that I like

***COROLLARY 4.4.3. There exists a submartingale with trhe distributions 

(n = Uniform((0,
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and an inverse martingale with the distributions 

(n = Uniform((0,
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4.5.
The preference  “Mean - variance” versus the concave domination
In portfolio theory the preference defined by
(4.5.1)
X (medvar Y 
( 
EX ( EY şi Var(X) ( Var(Y)


is popular.


Is there any connection between that and the increasing concave domination?

We already know that X (st Y  ( X (ico Y and that X (co Y ( X (ico Y.

*EASY! X (co Y  ( X (medvar Y .

**EASY there are no other relations between  “(st”, “(co” and “(medvar”. For instance

 p ( p’ ( p’ ( Binomial(1, p) (st Binomial(1, p’) but no concave domination and no  “(medvar” domination. However the situation change in the case of normal distributions.

***PROPOSITION 4.5.1.   Avem

(i).    Normal(a1,(2) (st Normal(a2,(2) ( a1 ( a2, (1 = (2 

(ii).   Normal(a,(12) (cx Normal(a,(22) ( a1 = a2, (1 ( (2
(iii).  Normal(a,(12) (co Normal(a,(22) ( a1 = a2, (1 ( (2
(iv).  Normal(a1,(12) ( icx Normal(a2,(22) ( a1 ( a2 , (1 ( (2
(v).   Normal(a1,(2) ( ico Normal(a2,(2) ( a1 ( a2, (1 ( (2  ( Normal(a1,(2)(medvar Normal(a2,(2)

MAYBE the mean-var evaluation of the risk comes from these cases and from the naïve belief of the experimenters that everything is normally distributed.

The uniform case

***PROPOSITION 4.5.2. Let aj ( bj , j = 1,2,  Xj ( Uniform(aj,bj), mj = EXj, (j2 = Var(Xj);

(i).  U(a1,b1) (st U(a2,b2) ( a1 ( a2, b1 ( b2 ;

(ii). U(a1,b1) (cx U(a2,b2) (  m1 = m2, (1 ( (2 ;

(iii). U(a1,b1) (co U(a2,b2) ( m1 = m2, (1 ( (2
(iv). U(a1,b1) (icx U(a2,b2) ( b1 ( b2, m1 ( m2
(v).  U(a1,b1) (ico U(a2,b2) ( a1 ( a2, m1 ( m2
(vi). U(a1,b1) (medvar U(a2,b2) ( m1 ( m2 , (1 ( (2 ( a1 + b1 ( a2 + b2 , a1 – b1 ( a2 – b2 


**COROLLARY. În the family iof the uniform distributions the implications

 (4.5.7)

  “(co”  
(
 “(medvar” 
( 
“ (ico” .

hold.


The lognormal case

 Recall that X ( Lognormal((,() ( X = e( +(Z and Z ( N(0,1). Here ( is any real but ( ( 0. Clearly

(4.5.8)

X ( Lognormal((,() 
(
 EXn = 
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hence all the moments are finite. However its m.g.f. is infinite: EetX = ( ( t > 0, so it is a heavy tailed distribution. It is more and more used in financiary mathematics because of the Black-Scholes model. In this model the price of the assets are lognormal. Take it or leave it. 


PROPOSITION 4.5.3.  Let Xj ( Lognormal((j,(j), j = 1,2. Then

(i).
X1 (st X2 ( (1 ( (2 , (1 = (2 ;

(ii).
X1 (icx X2 ( (1 + (12/2 ( (2 + (22/2 , (1 ( (2 ;

(iii).
X1 (cx X2 ( (1 + (12/2 = (2 + (22/2 , (1 ( (2 ;

(iv).
X1 (ico X2 ( (1 + (12/2 ( (2 + (22/2 , (1 ( (2 ; 

(v).
X1 (co X2 ( (1 + (12/2 = (2 + (22/2 , (1 ( (2 ;

(vi).
X1 (medvar X2 ( (1 + (12/2 ( (2 + (22/2 , 
[image: image64.wmf]2

2

2

2

2

2

2

2

2

1

2

1

2

1

2

1

2

2

2

2

2

2

s

+

m

s

+

m

s

+

m

s

+

m

-

³

-

e

e

e

e


5. Bayesian models ICX and ICO monotone
Proposition 3.1 states that (1 (icx (2 implies Poisson((1) (icx Poisson((2). 

Or, otherwisw stated if Q(x) = Poisson(x) then this model has the property that

(5.1) (1 (icx (2 ( (1Q (icx (2Q
Definition. Let Q be a model from E1 to E2 , where E1 and E2 are intervals. We say that

· Q este ICX monoton if (5.1) holds

· Q este ICO monoton (1 (ico (2 ( (1Q (ico (2Q
Then Proposition 3.1 can be restated as 

“The model Poisson(x), x ( 0, is “icx”- monotone”.

**PROPOSITION 5.1. The following assertions are Equivalent:

(i).
Q is ICX monotone 

(ii).
u convex utility ( Qu is convex utility

(iii).
Qu is a convex utility for any particular u of the form  u(x) = (x-a)+ , a ( ( or u(x) = x;

(iv) (holds only if Q (x) is a distribution on the set of non negative integers !)

 Qu is convex utility for any u(x) = (x-a)+ , a nonnegative integer.

The ICO analog

**PROPOSITION 5.1’. The following assertions are equivalent:

(i).
Q is ICO monotone 

(ii).
u concave utility ( Qu is concave utility

(iii).
Qu is a concave utility for any u(x) = a ( x , a ( ( or u(x) = x

**PROPOSITION 5.2.  Let Q1, Q2 be two monotone ICX (respectively ICO) models. Then Q1(Q2 and Q1Q2 are also ICX (respectively ICO) monotone. 

***PROPOSITION 5.3. If Q(x) = Poisson(x), x ( 0 then Q is both ICX and ICO momotone.

Some other monotone models

***PROPOSITION 5.4.

(i).
The model Q(x) = Exponential(
[image: image65.wmf]x
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), x ( 0, (agree that Exponenţial(() = (0) is ICX monotone (but NOT ICO monotone). As aconsquence the model Q(x) = Gamma(n, 
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(ii).
The Model Q(x) = Negbin(1, 
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(iii). The model Q(x) = Uniform(0,x), x ( 0 is ICX monotone, not ICO monotone.


**COROLLARY 5.5. Binomial(k,p) (cx Poisson(kp) (cx Negbin(n,() if  n, ( are chosen such that all these distributions have the same expectation (kp= n(1-()/() 

În words: if the expectations are the same, the binomial is the less dangerous and the negative binomial the most dangerous. 


II.3. Other comparisons. Comparisons of comparisons


1. Comparison of the dominances: stochastic, convex, concave

The five comparisons considered so far make sense at least on the family Pc of the distributions with compact support and and have the following properties

***PROPOSITION 1.1. If “(” is one of these five dominations then

a.
they are order relations: ( ( ( , ( ( ( ( (  = (;

b. invariant w.r.t. convolution: (j ( (j , j = 1,2 ( (1((2 ( (1((2;

c. invariant w.r.t. mixtures: (j ( (j , j = 1,2 . 0 ( p ( 1 ( (1-p)(1 + p(2 ( (1-p)(1 + p(2 ;

d. invariant w.r.t. weak dominated convergence:
(n ( (, (n ( (, Supp((n) ( Supp((n) ( K , K compact, then (n ( (n ( n ( ( ( ( ;

e. invariant w.r.t. compounfromg: if ( = ((n)n are i.i.d. non-negative, Sn = (1+(2+…+(n,  N,N’ are two independent counters (on) (, then N ( N’ ( SN ( SN’
The following implications are more or less obvious

*PROPOSITION 1.2. Let ( and ( two distributions on the real line with finite expectation. Then

( (st ( ( ( ( icx ( şi ( ( ico (
( ( cx ( ( ( ( icx (
( ( io ( ( ( ( ico (
There is no equivalence between them.


The simplest case : distributions on In :=(0,1,…,n(.


The distributions can be identiLetd with points from (n+1 .

Namely, if ( = p0(0 + p1(1 + …+ pn(n , let us denote

· by p the vector (p0,…,pn) , 

· by  s* =s*(() = (s*0,s*1,…,s*n) the vector s* = (p0, p0 + p1 , p0 + p1 ,…, p0 + p1 + …+ pn-1 , 1) 

· by s = s(() = (s0,s1,…,sn) the vector s = (1,p1+p2+…+pn,….,pn-1 + pn ,pn ). 

Therefore 

(1.7)
s*j = p0 + p1 + …+ pj, sj = pj + pj+1 + … + pn , ( 0 ( j ( n (notice that s*j-1 + sj = 1 !)


Then 

(1.8) F( 
=  s*01[0,1)  + s*11[1,2) + …+ s*n-11[n-1,1) + 1[n,() 

(1.9) 1 - F( 
= s11[0,1)  + s21[1,2) + …+ sn1[n-1,1) 

Let also (((x) = 
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These two functions are polygonal. Explicitly we have 

(1.10) (((x) = p0x- + p1(x-1)- + … + pn(x – n)- , (*((x) = p0x+ + p1(x-1)+ + … + pn(x – n)+
For x ( 0 the first function has the slope  -1 and the second has the slope 1 for x ( n . The sliopes change at the points x = j,  0 ( j ( n. 

To detect a stochastic domination we have to compare F( cu F( ; to detect ICX domination we have to compare (( and (( and to detect ICO dominance we need to compare (*(  (*( . 

From (1.10) it results that 

(1.11)
(((j) = pj+1 + 2pj+2 + … + jpj(n), (*((j) = jp0 + (j-1)p1 + … + pj-1 , 0 ( j ( n

Let 

(1.12) (( = ((((0), (((1), …, (((n-1)) şi (*( = ((*(1), (*(2),…,(*(n-1)) . 

remark also that (((j) = sj+1 + sj+2 + … + sn and (*((j) = s*0 + s*1 + … + s*j-1 .

The result

***PROPOSITION 1.3.  Let n ( 1 be a nonegative integerand (, ( be two distributions on In. Then

(i).
( ( st ( ( s*(() ( s*(()

(ii).
( (icx ( ( (( ( (( ( Sj(() ( Sj(() ( 1 ( j ( n where Sj(() = sj(() + … + sn(()

(iii).
( ( cx ( ( (( ( (( and S1(() = S1(()

(iv).
( (ico ( ( (*( ( (*( ( S*j(() ( S*j(() ( 1 ( j ( n where Sj(() = s*0(() + … + s*j-1(()

(v).
( ( co ( (  (*( ( (*(  and S1(() = S1(()

(vi).
If n ( 2, then ( ( icx ( and ( (ico ( ( ( ( st (. If n ( 3 it is possible that ( ( icx (, ( (ico ( but no stochastic dominance between them exist.


2. A property of the ICX domination: convolutions of mixtures are sometimes riskier 

**LEMMA 2.1. Let (j = Binomial(1,pj) , j = 0, 1 and ((t) = (1-t)(0 + t(1. for  0 ( t ( 1
That is,  ((0) = (0 and ((1) = (1. Then

(0 ( (1 ( cx ((t) ( ((1-t) = (0 + (1 - ((t)

QUESTION. Maybe Lemma 2.1. can be generalized ? Maybe always the inequality 
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ANSWER. NO ! If (0 = 
[image: image72.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

2

1

0

2

1

1

0

1

, (1 = 
[image: image73.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

4

1

2

1

4

1

1

0

1

 and t = ½. Then the two distributions are even symmetrical and  ((½ ) = 
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. Computing the convolutions we see that  (0 ( (1 = 
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For w(x) = (x(  
[image: image77.wmf]ò
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It is NOT true that (0 ( (1 ( cx ((t) ( ((1-t). 

A consequence of Lemma 2.1. 

***PROPOSITION 2.3. Let Xk ( Binomial(1,pk), 1 ( k ( n be independent. 

Let,  p = (p1 + …+ pn)/n  and Y ( Binomial(n,p).

Then X1 + …+ Xn ( icx Y
*COROLLARY 2.4.   Binomial(m,p) ( Binomial(n,q) ( cx Binomial(m+n,
[image: image80.wmf]n

m

nq

mp

+

+

)

*PROPOSITION 2.5. Repartiţia Poisson is riskier than the binomial ca binomiala:
 Binomial(k,p) ( cx Poisson(kp)

3. A Unifying approach. Stochastic dominance of order n.

Here all the random variables will be nonnegative.

Then Ew(X) makes always sense.

Let W0 = (w:[0,() ( ( ( w is a utility (
We know that ( (st ( ( 
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wd( ( w ( W0 (see II.1!) 

Writing w(x) – w(0) = (((0,x]) we see that any w ( W0  is the distribution function of some Stieltjes measure on [0,() . We see that

(3.1)
w ( W0  ( w(x) = w(0) +
[image: image83.wmf]ò
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Now suppose that w is differentiable at the right and its right derivative w’ is non decreasing.Then w is an increasing utility. 
Let W1 = (w ( W0 ( w increasing, w’ is increasing right continuous (
Then ( (icx ( ( 
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wd( ( w ( W1 (see II.2)

Now w’ is the distribution function of some Stieltjes measure (. From (3.1) we see that

(3.2)
w ( W1  ( w’ ( W0 (  w’(x) = w’(0) +
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and as a consequence

w(x) – w(0) = 
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It means that any w ( W1  can be written as

 (3.3)
w(x) = w(0) + xw’(0) +
[image: image91.wmf]ò
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Proceed further. Denote 

W2 
= (w ( W1( w’ continuous, differentiable at right,  w’’ increasing right continuous (

= ( w ( W1( w’  ( W1 (
From (3.3) it follows that

 (3.4)
w ( W2 (  w’(x) = w’(0) + xw’’(0) +
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which further implies 

(3.5) w ( W2 (  w(x) =w(0) + xw’(0) + 
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We can recurrently define

(3.6) w ( Wn ( w , w’ ( Wn-1 

Integrating (3.5) it follows that

***PROPOSITION 3.1. w ( Wn iff there exists some Stieltjes on [0,(), denoted by

 ( = ((w) such that

(3.7) w(x) = w(0) + 
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and w’(0), w’’(0),…,w(n)(0) are nonnegative.

***THEOREMA 3.2. The sequence (Wn)n is decreasing.
(i). All the families Wn are closed cones w.r.t. pointwise convergence: 

wk ( Wn, wk ( w ( w  ( Wn. 

(ii).If M is a family of functions definined on (0, () let us denote by Cone (M) the smallest cone closed w.r.t. pointwise convergence containing M. Then

(3.8) Wn = Con ((1,x,…,xn-1, ((x-a)+n ( a ( 0(() 

For instance

·  W0 = Con ((1[a,() ( a ( 0(),

·  W1 = Con ((1, ((x-a)+ ( a ( 0((),

·  W2 = Con ((1,x, ((x-a)+2 ( a ( 0(()  etc

***PROPOSITION 3.3. Let W( be the intersection of the cones (Wn)n .

Then  W( ( C( ([0,()) is also a closed cone containing all the series with nonnegative integers. As a particular case all the functions x ( eax are in W(.


QUESTION. I do NOT know if W( = Con ((xn ( n ( 0, n natural() 

Definition. Let X,Y be two risks from Ln and (,( be their distributions.

We say that X is n - dominated stochastically by Y iff Ew(X) ( Ew(Y) ( w ( Wn 

Or, in terms of distributions, iff 
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wd( ( w ( Wn . 

We denote that fact by „ X ((n) Y ” or „( ((n) (”. 

It follows that „(st” = „((0)” and „(icx” = „((1)”.

*PROPOSITION 3.2.  X ((m) Y, m ( n  ( X ((n) Y ( X ((() Y
 

***PROPOSITION 3.3.

Let  Probn  = {(  distributions on [0,() ( 
[image: image101.wmf]ò

xn d((x) ( (} the set of risks from Ln  

The relation „((n)” is an order relation on  Probn
***PROPOSITION 3.4. 

(i). Let X,Y be two random nonnegative variables from Ln , n ( 0, n ( (. The following assertions are equivalent.

(i1).
 X ((n) Y 

(i2).
EXk ( EYk ( k = 1,2,…,n and E((X – a)+n) ( E((Y – a)+n) ( a ( 0

(ii). Let X,Y be two r.v.’s from L( . The following assertions are equivalent.

(j1).
X ((() Y

(j2).
EXk ( EYk ( k = 1,2,… 

This domination implies the inequality

mX (t) ( mY (t) ( t ( 0  , where  mX(t) = EetX is the m.g.f.of X

COUNTEREXAMPLE. It may be possible that mX ( mY  and still be false that X ((() Y. For instance  X ( 
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Then mX(t) = (1 + et + e2t  + e3t) / 4 and mY(t) = (2 + 23et + 11e3t) . 

Then(mY(t) – mX(t)) = (et – 1)(2e2t – 7et + 7) ( 0 ( t ( 0. Therefore mX ( mY ; however 

EX = 1.5 ( 1,555… = EY and EX2 = 14/4 = 3.5 ( 3,3888… = EY2 . 

Definition. Exponential domination. Let X,Y be two r.v.’s with the distributions ( and (.

· X is exponentially convex  dominated by Y iff mX(t) ( mY(t) ( t ( 0 ; we denote that by  X (exp cx Y or ( ( exp cx (
· X is exponentially concave  dominated by Y iff mX(t) ( mY(t) ( t ( 0 ; we denote it by X (exp co Y ’’  or ’’ ( ( exp co (
· X is exponentially dominated by Y iff X (exp cx Y and X (exp co Y ; we denote it by X (exp Y
Notice that the exponentially convex  dominance is given by the utilities w(x) = etx with

t ( 0 (it mkakes sense only for light tailed ditributions) and the exponentially concave one is given by the concave utilities u(x) = 1 – e –tx . It makes sense for any nonnegative random variables. 

The above counterexample shows that it is possible that X(expY  but not true that X ((() Y. 

**PROPOSITION 3.5. The exponential concave dominance is a order relation on the distributions on [0,() and the exponential convex one is still an order relation on the family of the distributions with compact support. 

***PROPOSITION 3.6. All these kinds of dominances are invariant w.r.t. convolution. 
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*PROPOSITION 3.7. And they are invariant w.r.t. mixtures
**PROPOSITION 3.8. And they are invariant w.r.t. weak dominated convergence 

**PROPOSITION 3.9. And the exponential dominance – both convex and concave - is invariant w.r.t. compounfromg. 

QUESTION. What about the other ones? „(n” and „((” are invariant w.r. o compounfromg?

I DO NOT KNOW.


**PROPOSITION 3.10. Let (0, (1 be two distributions on the real line with compact support.Let ((p) = (1-p)(0 + p(1 , 0 ( p ( 1 . (Thus ((0) = (0 and ((1) = (1). 

Then 

(3.16) ((p) ( ((1-p)  (exp co  (0 ( (1  ( exp cx  ((p) ( ((1-p) 

As a byproduct, if we have n distributions (1,…,(n and denote by 
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 the distribution 
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(3.17’)

[image: image107.wmf]m

(n (exp co (1(…((n (exp cx 
[image: image108.wmf]m

(n

II. 4. Multidimensional comparisons

1.
Stochastic domination – definitions

There are great differences between the multidimensional case and the unidimensional one. 


Let X , Y be two d-dimensionalvestors and (, ( be their distributuions. Let also F and G be their distribution functions : 

F(x) = P(X1 ( x1,…,Xd ( xd), G(x) = P(Y1 ( x1,…,Yd ( xd) ( x = (x1,…,xd) ( (d


Defintion 1.  X is weakly stochastically dominated by Y  iff 

 (1.1)
X (stw Y  
[image: image109.wmf]Def
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(((a,()) ( (((a,()) ( a ( (d 


where (a,() means (a1,()((a2,()(…((ad,(). 

Denote that fact by  “X (stw Y” 


We shall us ethe notations F*(a) = P(X ( a) = (((a,()) andG*(a) = P(Y ( a) = (((a,())


The crucial novelty is that in the multidimensional case it is no more true that F + F* = 1. That’s why the definition (1.1) does NOT imply that F ( G.

In the two dimensional case the relation between F and F* is

F*(x) == 1 – F(x1,() – F((,x2) + F(x1,x2)  .

Therefore in this case  “stw” becomes

(1.2) X (stw Y ( F(x1,() + F((,x2) – F(x1,x2)  ( G(x1,() + G((,x2) – G(x1,x2)

And that has no reasoms to be related to F ( G

**Example1.1. Let n = 2. We identify  (2 with C , the complex Letld. Let

 X ( 
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. Then X (stw Y . 


Definition 2.  X is stochastically dominated by Y (denoted by “X (st Y”) iff

(1.5)
X (st Y  
[image: image112.wmf]Def
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Ef(X) ( Ef(Y) ( f : (d ( (  measurable bowhered and increasing


Increasing means

(1.6)
x ( y ( f(x) ( f(y)

whetre  “x ( y” means xj ( yj ( j . We shall also use the notation “x ( y”  for “xj ( yj ( j” . Remark also that in the multidimensional case the measurability is necessary because a increasing function is not necessarily measurable. For instance if f is the indicator of the set 

A = ((x,y) ( [0,()2 ( xy ( 1(( B and B is a not measurable set on the curve ((x,y) ( xy = 1}, then f is increasing and not measurable. 


The two definitions cover different things.


Example 1.1.  Although X (stw Y, it is not true that X (st Y .

If  f = 1E with E = (x ( (2 ( x1 + x2 ( 1( then f is increasing and Ef(X) = P(X ( E) = 1 while Ef(Y) = P(Y ( E) = 5/6 


Obviously

*PROPOSITION 1.1. X (st Y ( X (stw Y .

and

*PROPOSITION 1.2. Both “(stw” and  “(st” are order relations on the set Prob((d) of the probability distributions on (d .

**Example 1.2. (a (stw (b ( (a (st (b ( a ( b .

2. Equivalent definitions

**PROPOSITION 2.1. Let X,Y be two stochastic d-dimensional vectors and let CX,Y  be the set of those measurable functions  f :(d ( ( with the property that f(X) and f(Y) are from L1 and

(2.1)

Ef(X) ( Ef(Y)

Then CX,Y is a cone (i.e. is closed w.r.t. nonnegative linear combinations) closed w.r.t. monotone limits (i.e. fn ( f , Ef1(X) ( - ( , fn ( CX,Y ( n ( f  ( CX,Y and fn ( f , Ef1(X) ( ( ( f  ( CX,Y).

Definition. A cone C  of functions on (d  is closed if it has the property that 

fn ( C, fn ( f , fn and f bowhered ( f ( C.

Whenever we speak about closed cones we shall whererstand only that definition. ***PROPOSITION 2.2.  Let 

· C1 be the closed cone generated by the functions1[a,() , a ( (d 

· C2 be the closed cone generated by the functions 1E where E is an increasing measurable set (in the sense that its indicator is increasing) 

· C2* the closed cone generated by the functions 1E where E is an increasing closed set. 

Then

        (i).
      The cone C1 is also generated by the functions 1(a,() , a ( (d ;

        (ii)      All functions F from C1 have the property that (hF(x) ( 0 ( x ( (d, h ( 0 where 

(2.2) (hF(x) = 
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(2.3) 
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F(x) = F(x + hjej) – F(x), (Here (ej)1(j(n is the canonical basis in (d)

       (iii)
      The cone C1 contains all functions of te form forma f(x) = f1(x1)…fd(xd) where fj : ( ( [0,() are increasing and bounded ;

      (iv).       The cone C1 contains all continuous distribution functions F(x) = (((-(,x]) ofbounded measures defined on (d ;

       (v).      The cone C2 contains all measurable increasing and bounded functions. Moreover, it is closed w.r.t. the operations « inf » and « sup ». The cone C*2 is also a lattice which contains all continuous measurable bounded increasing functions.

       (vi). The cone C1 is generated by functions of the form f(x) = f1(x1)…fd(xd) where fj : ( ( [0,() are increasing continuous and bounded . 

Remark 1. Condition (ii) of the above result gives a useful criterion to decide if an increasing function F can belong to C1. For instance , for n = 2, the function F(x,y) = (x( y)+ ( 1, even if increasing, cannot belong to C1 because, for instance, (1,1F(0,0) = 1 – 1 – 1 + 0 = - 1 ( 0.

Remark 2. Clearly any function having the property (ii) is increasing 


Remark 3. Unlike the unidimensional case in the multidimensional case there is no equivalence between  “(((x() = 0 ( x” and “F( continuous” . For instance, if ( is the uniform distribution on [0,1]((0(, then F((x,y) = 0 if (-(,0)(( ( [0,()((-(,0) , F((x,y) = x(1 if x(0, y(0. Thus F((1,0) = 1 but F((1,0-0) = 0 hence F ( is not continuous. However, it belongs to C1, because it is a limit of linear positive combinations of functions of the form 1[s,()([0,() . 


Remark 4. Maybe any distribution function F( be C1. At least that is the claim of Ruschendorf, L (Ordering of distributions and rearrangement of functions, Ann. Prob 9, 276 – 283, 1981) . I did not understand the proof. 


Remark 5. If F satisfies the condition (ii). and is n times differentiable then

(2.7)
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For that kind of functions (ii). Is equivalent to 
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***PROPOSITION 2.3


The following statements are equivalent

 (i1)
X (stw Y

(i2)
Ef(X) ( Ef(Y) ( f of the form f1(f2(…(fn with fj :( ( ( increasing and pozitive

(i3)
EF(X) ( EF(Y) for any F continuous distribution function of a bounded measure on (d 

(i4)       Ef(X) ( Ef(Y) ( f of the form f1(f2(…(fn  with  fj :( ( ( increasing, continuous, bounded and pozitive


****PROPOSITION 2.4. Let (,( be two probabilities on (d. The following assertions are equivalent:

(j0)
There exist another probability space ((*,K*, P*) and two random vectors X,Y : ( ( (d such that

 X ( (, Y ( ( and moreover,  X ( Y a.s..

(j1)
Let M = ((x,y)( x,y ( (d and x ( y( ( (2d  and prj be the canonical projections from (2d to (d.

Then there exists P, a probability on (2d = (d((d  such that

(2.8) P(M) = 1

(2.9) P(pr1-1 = ( , P(pr2-1 = (
(j2)
 ( (st (
(j3)
((A) ( ((A) ( A ( (d increasing măsurabilă

(j4)
((A) ( ((A) ( A ( (d increasing închisă

(j5)
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d( ( f : (d ( ( increasing bounded continuous

(j6)
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REMARK. The difficult implication is “(j6) ( (j1)”. It is a very deep result due to Strassen, 1965

3. Strassen’s theorem

Lines of the proof.

Let d ( 1 be a natural number. Let E = (d and M ( E2 , M = ((x,y)( E2 ( x ( y(
Let ( = (P :B(E) ( [0,1] ( P is o probability and P(M) = 1(
Let B =((P(pr1-1, P(pr2-1) ( P ( ((
**LEMMA 3.1.  ( is a convex set from the Banach space of the signed measures  M(E2, B (E2)) endowed with the variation norm, ║(║ = ((((E2). Moreover it is weakly closed 

***LEMA 3.3.. Let Y  = X2 = M(E, B (E)) ( M(E, B (E)). Then

(i).
Y is a Banach space with the norm ║(║= ║(1║ + ║(2║.

(ii).
If on Y we consider the product topology T =Tw(Tw Then (Y, T) is a locally convex topological vector space and its dual Y’ is isometric with Cb(E)(Cb(E), endowed with the norm ║(f1,f2)║=║f1║(║f2║   in the precise sense that

(3.9) any linear continuous functional L :Y ( ( has the form

L(() = 
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d(2  with   f1, f2 ( Cb(E) and ║L║ = sup( :║(║=1(L(()(
**LEMMA 3.4 The set  B is convex and weakly closed.

***TEOREMA 3.6. Let Y be a topological locally convex vector space and B ( Y convex and closed. Let a ( B be a point from Y. Then there exists a functional from the dual - Y’ – which strictly separates a from B.

**COROLLARY 3.7. Let Y  be a un topological vector space , B a closed convex set and a ( Y . If

(3.13)
L(a) ( sup L(B) ( L ( Y’
Then a ( B . The converse holds too.

In our case: Y = M(E, B (E))( M(E, B (E)) endowed with the product topology Tw(Tw. According to Lemma 3.3 its dual is the space Cb(E)(Cb(E).  The set B is

 ((P(pr1-1, P(pr2-1) ( P ( ((
which, according to Lemma 3.4 is convex and closed. The point a is a pair ((,() of probabilities on E.  Then Corollary 3.7 becomes 

***COROLAR 3.8 Let ((,() be probabilities on E = (d . If the inequality

(3.14)
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fd( + 
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gd( ( sup (
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(f(x) + g(y))dP(x,y)(P ( (( ( (f,g) ( Cb(E)(Cb(E)

holds, then ((,() ( B , meaning that there exists P0 ( ( such that ( and ( be the marginals of P0 

***LEMMA 3.9 Suppose that ( is a set of probabilities on E2 . Let (,( be two  probabilities on  E with the property 

(3.15)
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fd( + 
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gd( ( sup (
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(f(x) + g(y))dP(x,y)(P ( (( ( f,g : E ( ( bounded and uniform continuous 

Then the same inequality holds for funcţions f and g bounded and continuous.

** TEOREMA 3.10(Strassen). Let (, ( be two probabilities on E.The following two properties are equivalent 

(i).

[image: image129.wmf]ò

fd( ( 
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fd( ,  ( f : E ( ( uniform continuous, bounded increasing

(ii).
There exists a probability P pe E2 with the property that P(M) = 1 and ( = P(pr1-1, ( = P(pr2-1 


Remark.The Real Strassen Theorem covers other situations, too. 

****THEOREM 3.11. Let E be a metric separable complete space. Let M ( E2 be closed (not necessarily convex). Let ( be  the set of those probabilities P on E2 concentrated on M  (Remark that ( is convex and closed!). 

Let B = (((,()( ( and ( are marginals of some probability P ( ((

Then

(3.16) ((,() ( (  ( 
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gd( ( sup(f(x) + g(y) ( (x,y) ( M(
4.
Properties of the stochastic dominations

1.
 Invariance wrt mixtures .
**PROPOSITION 4.1. Let (,( be two probabilities on (d . Then

(4.1)

( (stw (  ( ((prj-1(st ((prj-1 (1(j(d and  ( (st (  ( ((prj-1 (st (( prj-1 ( 1(j( d
Or, in terms of random vectors

(4.1’)

X (stw Y  ( Xj (st Yj  ( 1 ( j ( d and X (st Y  ( Xj (st Yj ( 1 ( j ( d

Remark. No converse of form “Xj (st Yj ( 1 ( j ( d ( X (stw Y “ can be true. For instance, if 

d = 2, U,V ( Uniform(0,1),

 X = (U,1- U)1(U (½  (+ (U,U – ½)1(U(½( , 

Y = (V,1- V)1(V (½  (+ (U,U + ½)1(U(½( ,

Then Xj,Yj ( Uniform(0,1) but there is no dominance between X and Y  For instance  a = (¼, ¾) , b =  (¾,¼)  we get

 F*(a) = P(X ( a) = 0 , G*(a) = P(Y ( a) = ¼ hence F*(a) ( G*(a) 

but

F*(b) = P(X ( b) = ¼ , G*(b) = P(Y ( b) = 0 hence F*(b) ( G*(b)

There is no order between F* and  G*.


There is a piece of truth however. If  All the components of the vectors are independent, then the assertion is true.


**PROPOSITION 4.2. Let (j  with  j = 1,2 be probabilities on (d and (j , j = 1,2 probabilities on (d’ . Then


(1 (stw (1 , (2 (stw (2 ( (1((2 (stw (1((2 


***PROPOSITION  4.3.Generalization. Let ((,T,() be a measure space (space of the parameters). Let Q and Q’ be two transition probabilities from ( to (d .Then


 If for any ( ( ( the domination Q(() (stw Q’(() holds ,then (Q ( stw (Q’. 

2.
 Invariance wrt convolutions .
**PROPOSITION 4.5. Let (1, (2, (1, (2 be distributions (d.

(i). If (1 (stw (1 and  (2 (stw (2 , Then (1((2 (stw (1((2
(ii). If (1 (st (1 and  (2 (st (2 , Then (1((2 (st (1((2
3.
 Invariance wrt weak convergence

**PROPOSITION 4.6. Let ((n)n , (   be probabilities on (d .

(i).
If (n ( (, (n ( (, (n (stw (n ( n  Then ( (stw (
(ii).
If (n ( (, (n ( (, (n (st (n ( n  Then ( (stw (
4.
 Invariance wrt compounding .

**PROPOZITIA 4.7. Let X := (Xn)n and Y := (Yn)n be two sequences of i.i.d. nonnegative d – dimensional random vectorsi. 

Let SX,n = X1 + … + Xn if n ( 1,  SX,0 = 0 and  SY,n =  Y1 + … + Yn if n ( 1 , SY,0 = 0. 

Let N be a counter independent both on X and Y. 

Then
 Xn (st Yn   ( n   ( SX,N  (st    SY,N 


Xn (stw Yn  ( n   ( SX,N  (stw  SY,N 
(ii). 
Let N,N’ be two counters independente both on X and Y. Suppose that N (st N’ and thatXn, Yn are nonnegative. 
Then
 Xn (st Yn   ( n   ( SX,N  (st    SY,N’ 


Xn (stw Yn  ( n   ( SX,N  (stw  SY,N’ 
5.          Stochastic „dual weak” domination

In the one dimensional case we could define the fact that X (st Y  în three ways:

a. Eu(X) ( Eu(Y) for any utility u ;

b. P(X > x) ( P(Y > x) ( x 

c. P(X ( x) ( P(Y ( x) ( x 

În the multidimensional case the definition a. gives the stochastic domination, the definition b. gives the weak stochastic domination and the definition c. gives a different concept: the dual weak dominance. 

Definition.  Let X,Y be two d-dimensional random vectors. We say that X is dual weak dominated by Y P(X ( x) ( P(Y ( x) ( x ( (d. Denote that by X (stdw Y. 

So , if Ra = (-(, a) and Ra = (a,()

· ( (st  (  ( ((A) ( ((A)  ( A measurable increasing;

· ( (stw (  ( ((Ra) ( ((Ra)  ( a ( (d ;

· ( (stdw (  ( ((La) ( ((La)  ( a ( (d  ( ((Lac) ( ((Lac)  ( a ( (d  

Clearly „(st  ” ( „(stw and (stdw ”;

Also, it is easy to see that all three dominations are order relations. dominarea stocastică le implică pe celelalte două dominări slabe. 

Let Cst  be  the closed cone generated by functions 1A where A is increasing open,

C stw the closed cone generated by indicatoris of intervals Ra , a ( (d and

C stdw the closed cone generated by indicatoris of intervalels La , a ( (d
Then

**PROPOSITION 5.1. Let (,( repartiţii pe (d, d ( 1. Then


- 
  ( (st  ( 
( ((f) ( ((f) ( f ( Cst;


-
  ( (stw ( 
( ((f) ( ((f) ( f ( Cstw ;


-
  ( (stdw ( 
( ((f) ( ((f) ( f ( Cstdw ;


The cone Cstw is similar with Cstdw : the first obne is generated by functions having the form f = f1(f2(…(fd  with the functions fj: ( ( (+ increasing continuous bounded, and the second, Cstdw is generated by similar functions but they are decreasing instead.

**PROPOSITION 5.2.

(i).
((n (stdw (n, (n ( (, (n ( () 
(
( (stdw ( (stability to weak convergence)

(ii). 
(j (stdw (j , j = 1,2 
( (1((2 (stdw (1((2  (stability to product)

(iii).
(j (stdw (j , j = 1,2 
( (1((2 (stdw (1((2 (stability to convoluţions)

(iv).
Q(() (stdw Q’(() ( ( ( (
( (Q (stdw (Q’ (stability to mixtures)

(v).
If (Xn)n and (X’n)n are two sequences of d-dimensional i.i.d. random vectors and if N is a counter independent on both sequences Then Xn (stdw X’n ( n  ( SX,N (stdw SX’,N 

where SX,N = X1 + …+XN and  SX’,N = X’1 + …+X’N (stability to compounding with the same counter


EXAMPLE. QUESTION. Are there implications between „(stw” and „(stdw” ?

ANSWER. NO. In the case d = 2, with ( = p1(a + p2(b + p3(c + p4(d and ( = q1(a + q2(b + q3(c + q4(d where the p’s , q’s are weights and a = (0,0), b = (0,1), c = (1,0), d = (1,1).  


Then the three dominations become in this very particular case:

( (st   ( 

( p4 ( q4,  p1 + p2 (  q1 + q2 ,  p1 + p3 (  q1 + q3,  p1 ( q1 

( (stw (

( p4 ( q4,  p1 + p2 (  q1 + q2 ,  p1 + p3 (  q1 + q3
( (stdw ( 
(              p1 + p2 (   q1 + q2 ,  p1 + p3 (  q1 + q3,  p1 ( q1
(However, in this very particular case it is true that “(st  ” = “(stw” and “(stdw” !)

If For instance, ( = Uniform((a,b,c,d() and (1 = Uniform((b,c() Then (1 (stw (, but it is not true that (1 (stdw (; on the contrary, if (2 = Uniform((a,d() then  (2 (stdw (, but not that (2 (stw (; even more, (1 (stw (2 and (2 (stdw (1.


On sets having six points it is possible to find ( and ( such that ( (stw ( , ( (stdw ( but it is false that ( (st (. 

**Example: A = (0,1,2(((0,1(, B = ((0,0),(1,1),(2,0)(, ( = Uniform(B), ( = Uniform(A).
Or, the continuous analog: 

( = Uniform([0,1]([0,1] ( [1,2]([1,2] ( [2,3]([0,1]) and 

( = Uniform([0,3]([0,1])

Then ( (stw, stdw ( but it is false that ( (st (.

QUESTION. In concrete cases, one may check if there exists weak dominations. How to deal with the strong one? You never can describe enough an increasing function. A hint would be to reduce the dimension. But it is not enough…

**PROPOSITION  5.3. If X (st Y and a ( 0 
then a’X (st a’Y.

It is suggested that a preliminary approach would be to compare the linear combinations. If we want to decide if ( (st ( try first to see if there is stochastic domination between ((La-1 and ((La-1 for a ( 0, where La(x) = a’x. If we are lucky we can answer the question in the negative. Definition. Let ( and ( be two distributions on (d. We write  “( (lst (” if

((La-1 (st ((La-1 ( a  ( (+d
Then the above result is

5.2)
( (st ( 
(
( (lst (

Sometimes it helps. In the normal situation, for instance.


**PROPOSITION 5.4. Let (1, (2 ( (d and C1, C2 ( Md,d((). Then

(5.3) Normal((1, C1) (lst Normal((2, C2) 
( Normal((1, C1) (st Normal((2, C2)

 (  (1 ( (2 , C1 = C2 

While weaker, the relation “(lst” is not that weak!

**PROPOSITION 5.5. The relation “(lst” is an order relation

**PROPOSITION 5.6. Let X,Y be two random vectors from (d . Then

(5.4)
X (lst Y ( P(a’X > t) ( P(a’Y > t) ( t ( (, ( a ( (+d

Example: “(lst” does NOT imply “(stw”. 


COUNTEREXAMPLE 5.7. Let d = 2 , M = (0,1,2(2, ( = Uniform(M), and ( be defined as
18( = 3((0,0) + 2((1,0) + 1((2,0) + 2((0,1) + 5((1,1) + 2((2,1) + 1((0,2) + 2((1,2)
Then X(lstY  but it is false that X(wstY.
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