Transition Probabilities

1. Definitions and notations.

Let (E,E) and (F,F) be two measurable spaces. A function Q: E(F ([0,1] is called a transition probability from E to F if

(i).
x ( Q(x,B) is E –measurable ( B ( F and

(ii).
B ( Q(x,B) is a probability on  (F,F) ( x ( E


Thus we can imagine Q as a family Qx of probabilities on (F,F) indexed on the set E. That is the way they do in statistics: they denote Q by (P()((( . We shall denote by Q(x) the probability defined by Q(x)(B) = Q(x,B). 


We shall write in short “Let E 
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F” instead of “Let Q be a transition probability from E to F”

Example 1. The regular conditioned distribution of a random variable X by a sub (-algebra F, denoted by P(X-1(F is a transition probability from ((,F ) to ((,B(()) (see “Conditioning” section. 3). Indeed, if we put Q((,B) = P(X ( B(F)(() = P(X-1(F (B)(() , then (i) and (ii) are fulfilled by the very construction of Q.
Example 2. A particular case is Q(x,B) when Q(X((),B) = P(X(B(Y)(() (the regular version!) where X and Y are two random variables . This time Q is a transition probability from ((,B(()) to itself.

Example 3. If F is at most countable and F = P(F) (all the subsets of F!) then all the transition probabilities from E to F are of the form

(1.1) Q(x) = 
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where the mappings x ( q(x,y) are measurable and 
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Indeed, if we denote Q(x,{y}) by q(x,y), then 1 = Q(x,F) = 
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. Moreover, by (i). these mappings should be measurable.

Example 4. If E is at most countable and E = P(E) then there are no measurability problems and all families (Q(x))x(E of probabilities on F are transition probabilities.

Example 5. If both E and F are at most countable, then a transition probability is simply a (possible infinite) matrix Q = (q(x,y))x(E,y(F with the property that   
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 = 1 ( x ( F. That is called a stochastic matrix. If E, F are even finite, this is an ordinary matrix with the sum of the entries on every line equally to 1. We can think at a stochastic matrix as being a collection of stochastic vectors – that is, of nonnegative vectors with the sum of the components equally to 1. 

2. The product between a probability and a transition probability.

Let (E,E) and (F,F) be two measurable spaces and E 
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F . Let also ( be a probability (or, more general, a signed bounded measure) on (E,E). Then we denote by ((Q the function defined on E (F  by the relation

(2.1)
((Q(C) = 
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Here C(x,.) = {y ( (x,y) ( C } is the section in C made at x. 

We shall also use the notation

(2.2)
(Q(B) = ((Q(E(B) = 
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Proposition 2.1.

(i).
If ( is a bounded signed measure on (E,E), then ((Q is a bounded signed measure on E (F. If ( is a probability, then ((Q is a probability, too. If f: E(F ( ( is measurable (nonnegative or bounded) then

(2.3)
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Remark. The meaning of (2.3) is that firstly we integrate f(x,.) with respect to the measure Q(x) and then we integrate the resulting function with respect to the measure (. The notation from (2.3) is awkward, that is why one denotes 
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d((x) instead. The most accepted notation is, however,  
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d((x). So (2.3) written in a standard form becomes

(2.4)
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(ii).
If ( is a bounded signed measure on (E,E), then (Q is a bounded signed measure on F. If ( is a probability, then ((Q is a probability, too. If f : F ( ( is measurable (nonnegative or bounded) then 

(2.5)
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Proof. It is easy. Firstly, both ((Q and (Q are measures because of Beppo – Levi theorem. Indeed, if Cn are disjoint, then ((Q(
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d((x) = 
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(x,Cn(x,.))d((x) (by Beppo-Levi!) = 
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(Q(Cn). Thus, ((Q is a probability. Moreover ((Q(E(F) = 
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d((x) = ((E) ; so, if ((E) = 1 , ((Q(E(F) = 1 too. As about the formula (2.4) its proof is standard, into the usual steps: indicator, simple function, nonnegative function, any. The same holds for (2.5). 

Remark 2.1. Suppose that F is countable. Then Q has the form (1.1), then (2.3) and (2.5) become

(2.6) ((Q(A({y}) = 
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(2.7) (Q({y}) = 
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If, moreover, E is at most countable, too, then ( = 
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(x)(x therefore (2.6) and (2.7) become

(2.8) ((Q({(x,y)}) = p(x)(q(x,y)

(2.9) (Q({y}) = 
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The relation (2.9) motivates the notation (Q. For, if we think ( as being the row vector (p(x)x(E and Q as being the “matrix” (q(x,y))x(E,y(F , then (Q is the usual product between ( and Q : (Q({y}) is the entry ((Q)y . That is why , when dealing with the at most countable case it goes without saying that ( is a row vector and Q a stochastic matrix.

Remark 2.2. If ( = (x , then obviously (Q = Q(x). Therefore

(2.10) (xQ = Q(x)

If we are in the at most countable case, the probabilities (x correspond to the cannonical basis ex ; the meaning of (2.10) is that the product between ex and Q is the row (Qx,y)y .

Let M(E,E) denote the set of all the bounded signed measures on the measurable space (E,E) , Prob(E,E) be the set of all the probabilities on that space and let Bo(E,E) denote the set of all the bounded measurable functions f : E ( (.

 Notice that M(E,E) is a Banach space with respect to the norm variation defined as ║(║ = (+(E) + (-(E) where ( = (+ - (- is the Hahn-Jordan decomposition of (. Recall that (+ is defined by (+(A) = ((AH() where H( is the Hahn-Jordan set of (, that is a set (almost surely defined) with the property that ((H() = sup {((A) ( A ( E }. In this Banach space the set Prob(E,E) is closed and convex. 

On the other hand Bo(E,E) is a Banach space too, with the uniform norm ║f║ = sup {(f(x)(; x ( E}. The connection between these two spaces is given by

Lemma 2.2. 
(i).
( ( M(E,E) ( ║(║ = sup {(
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(ii).
f ( Bo(E,E) ( ║f║ = sup {(
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(iii) (
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It means that the mapping ((,f) ( <(,f > : = 
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Proof. Let H be the Hahn – Jordan set of ( . Then (+(E) = ((H) and (-(H) = -(​(Hc). So ║(║ = ((H) - ((Hc) = 
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d(-( ( ║f║(+(E) + ║f║(-(E) = ║f║((+(E) + (-(E)) = ║f║(║(║ hence ║f║ = 1 ( (
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d( (:  ( ( M(E,E), ║(║ = 1} and if (xn​)n is a sequence of points from E such that ║f║ = limn(((f(xn)(, then ║f║ = limn(((
[image: image43.wmf]ò

f

d
[image: image44.wmf]n

x

e

( proving the converse inequality. (
Let now (E,E) and (F,F) be two measurable spaces and E 
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F Consider the mappings T : M (E,E) ( M (F,F) and T’ : Bo(F,F) ( Bo(E,E) defined by

(2.11) T(() = (Q

(2.12) T’(f) = Qf  defined by Qf(x) = 
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Proposition 2.3. Both T and T’ are linear operators; ║T║ = ║T’║ = 1 and T’ is the adjoint of T in the sense of the duality <,>. That is

(2.13) <T((),f > = <(, T’(f) > or, explicitly, 
[image: image48.wmf]ò

f

dT(() = 
[image: image49.wmf](

)

ò

f

T

'

 d( ( f ( Bo(F,F), (( M (E,E)

Proof. 
[image: image50.wmf]ò

f

dT(() = 
[image: image51.wmf]ò

f

d(Q = 
[image: image52.wmf]òò

)

d

,

(

)

(

y

x

Q

y

f

d((x) = 
[image: image53.wmf](

)

ò

f

T

'

(x)d((x). The linearity is obvious. Moreover  ║T║ = sup{║T(║ ( ║(║ = 1} = sup { (
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d((: ║(║=1, ║f║=1} ( 1 (by Lemma 2.2(iii). But if ( is a probability, then ║(║ = ║T(║ = 1 as T( is a probability, too.(
Remark 2.3. If F is at most countable, then by (1.1) Q(x) = 
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(2.15)
 Qf(x) =
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We can visualize f as being a column vector and Q as being a “matrix” . Clearly (2.15) means the product between the “matrix” Q and the “vector” f. That motivates the notation. So, from now on, it goes without saying that in the at most countable case the measures are row vectors and the functions are column vectors.   

3. Contractivity properties of a transition probability.

Let (E,E) and (F,F) be two measurable spaces and E 
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F . In the previous section we have defined the operator T( = (Q. 

We shall accept that the first space has the property that the singletons {x} belong to E. As a consequence the Dirac probabilities (x and (x’ have the property that x ( x’ ( ║(x - (x’║ = 2 . Indeed, if ( = (x - (x’ , then (+ = (x (- = (x’ ( ║(║ = (+(E) + (-(E) = 1 + 1 =2. 

(This may be not true if there are singletons {x} ( E ; since in that case it is possible to exist x’ ( E such that any set containing x contains x’, too . It means that (x - (x’ = 0. ) 

Let us define the quantity

(3.1) (-(Q) = 
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This is the contraction coefficient of Dobrushin. Remark that , as Q(x) and Q(x’) are probabilities, then ║Q(x)║=║Q(x’)║ = 1 hence (-(Q) (  
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sup(║Q(x)║ + ║Q(x’)║) = 1. It means that the contraction coefficient has the property 0 ( (-(Q) ( 1.

Proposition 3.1. The following inequality holds for a ( ( M (E,E)

(3.2) ║(Q║ ( (-(Q)║(║ + (1-(-(Q))(((E)(.

Proof. Let us fix some notations. Let H be the Jordan set of (, K be its complementary, m be the variation of (, m = (((=(+ + (- ,a = (+(E) = m(H), b = (-(E) = m(K) . Then 

(3.3) ( = (1H – 1K)(m , a + b = ║(║, a – b = ((E)

Taking into account Lemma 2.2 (i) one sees that the task is to prove that 

(3.4) f ( Bo(F,F) , ║f║= 1 ( (
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If b = 0, ( is an usual measure then ║(║ = ((E) hence (3.2) becomes ║(Q║( ║(║ and this is true because of proposition 2.3 (namely ║T║=1!) . The same if a = 0; now ║(║ = -((E) = (((E)( and  (3.2) becomes again ║(Q║( ║(║. 

So we shall suppose that a(0, b(0 and, moreover that a ( b (if not, replace ( with -( and (3.2) remains the same! ) .

Then, as (a-b(= a-b ( (-(Q)(a+b) + (1-(-(Q))(a-b( = (-(Q)(a+b) + (1-(-(Q))(a-b) = 2b(-(Q) + a-b hence (3.4) becomes 

(3.5)
f ( Bo(F,F) , ║f║= 1 ( (
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Corollary 3.2. Let T0 be the restriction of T on the Banach subspace M0 (E,E) of the measures ( with the property that ((E) = 0. Then RangeT0 ( M0 (F,F) and ║T0║ = (-(Q). As a consequence, if (1, (2 are probabilities on (E,E), then ║(1Q - (2Q║ ( 2(-(Q)


Proof. The first assertion is immediate: (T0()(F) = (Q(F) =
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If F  is at most countable, then the coefficient (-(Q) is computable. 
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. This is a consequence of the fact that if ( is a (-finite measure, then ║(((║ = ║(║1 = 
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is (-finite since F is at most countable. If E is at most countable, too, then we have the following consequence:

Corollary 3.3. Suppose that E and F are at most countable. Then ( is a stochastic vector (((x))x(E and 

(3.7) (-(Q) = 
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In this case (3.2) becomes

(3.8)
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4. The product between transition probabilities.

Since a transition probability is a kind of “matrix” , sometimes it is possible to multiply two of them. Suppose now that we have three measurable spaces (Ej,Ej) and two transition probabilities 
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Then we may construct two other transition probabilities denoted by Q1(Q2 and Q1Q2 . The first one is a transition probability from E1 to E2(E3 and the second one is from E1 to E3. Here are the definitions:

(4.1) Q1(Q2(x1, A2(A3) = 
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(4.2) Q1Q2(x1, A3) = Q1(Q2(x1, E2(A3) = 
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Proposition 4.1.

(i).
 If f : E2(E3 ( ( is bounded or nonnegative then

(4.3) 
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(ii). 
If f : E3 ( ( is bounded or nonnegative then

(4.4) 
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 dQ1Q2 = 
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Proof. Standard ; the four steps.(

Remark. If the spaces Ej are at most countable then we deal with stochastic matrices: Q1=(q1(x1,x2))
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, Q2 = (q2(x2,x3))
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  and   (4.1),  (4.2) become

(4.5) Q1(Q2(x1, {x2}({x3}) = q1(x1,x2)q2(x2,x3)

(4.6) Q1Q2(x1, {x3}) = 
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(4.7) ((Q1(Q2)f)(x1) = 
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(4.8) ((Q1Q2)f)(x1) = 
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The relation (4.6) is interesting: it is the usual product of the stochastic matrices Q1 and Q2. The equality (4.5) has no obvious analog between the matrix operations. It is easy to see that this product is associative.

Proposition 4.2. The associativity. 
Let ( be a bounded signed measure on E​1. Then

(4.9) ((Q1)Q2 = ((Q1Q2)

(4.10) Q1(Q2f) = (Q1Q2)f
If  (E4,E 4) is another measurable space and 
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(4.11)
(Q1Q2)Q3 = Q1(Q2Q3)

Proof. Let f : E3 ( ( be bounded or nonnegative. Then 
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(x3)Q2(x2,dx3)) Q1(x1,dx2)d((x1). On the other hand 
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d((x1) (by (4.4)) so both quantities coincide. As about (4.11) one gets (Q1Q2)Q3(x) = (x(Q1Q2)Q3 = ((xQ1Q2)Q3 and [Q1(Q2Q3)](x) = ((xQ1)(Q2Q3) =((xQ1Q2)Q3 which is the same.(

Remark. If all the spaces are at most countable, then (4.9) and (4.10) are the usual products between a row vector and a matrix (this is (4.9)) or between matrix and column vector (this is (4.10)). 


Corollary 4.3. The Dobrushin contraction coefficient is submultiplicative.


The following inequality holds

(4.12) (-(Q1Q2) ( (-(Q1)(-(Q2)

Proof. Let T1 : M0 (E1,E 1) ( M0 (E2,E 2) and T2 : M0 (E2,E 2) ( M0 (E3,E 3) be defined as T1(() = (Q1 and T2(() = (Q2. Then we know from Corollary 3.2 that (-(Q1) = ║T1║ and (-(Q2) = ║T2║. Notice that T2T1(() = T1(()Q2 = ((Q1)Q2 = ((Q1Q2). It means that (-(Q1Q2) = ║T2T1║ ( ║T2║(║T1║ = (-(Q1)(-(Q2). (
Suppose now that (Ej,Ej)j are measurable spaces and that Qj are transition probabilities from Ej to Ej+1. Because of the associativity the product Q1Q2…Q​n is well defined . If all these spaces coincide and Qi = Q, then this product will be denoted by Qn .

The fact that (- is submultiplicative has important consequences.

5. Invariant measures. Convergence to a stable matrix

Definition. A transition probability Q is called scrambling if (-(Qk) < 1 for some k ( 1. A probability ( is called invariant if (Q = (. 

Proposition 5.1. If Q is scrambling, then the sequence Qn(x) converges to the same invariant probability (. Moreover this probability is unique and the convergence is uniform in x.

Proof. We shall prove that the sequence Qn(x) is Cauchy in norm. Let us write n = kc(n) + r(n) where c(n) = [n/k]. Let also ( = (-(Qk). Then ║Qn+m(x) – Qn(x)║  = ║ (xQmQn - (xQn║ = ║(Qm(x) - (x)Qn║ ( ║ Qm(x) - (x║(-(Qn) (by Corollary 3.2) ( 2(-(Qn) ( 2((-(Q))n  (by Corollary 4.3) ( 2[(-(Q))k]c(n)   = 2(c(n) < ( if n is great enough. 

As M (E,E) is a Banach space, Qn(x) must converge to some probability ((x). Then ((x)Q = (limnQn(x))(Q = (limn (xQn)Q = limn (xQn+1 (by continuity of T) = limnQn+1(x) = ((x). So ((x) is invariant. 

Now suppose that ( and (’ are both invariant. Then (=(Q = (Q2 = (Q3 = …. Hence ║(=(’║ = ║(Qn - (’Qn║ = ║((-(’)Qn║ ( 2((Qn) ( 2(c(n)  ( 0. Therefore ║(-(’║=0 ( ( = (’.

It follows that Qn(x) ( ( where ( is the unique invariant probability. 

Moreover we have the estimation ║( - Qn(x)║ = ║(Qn - (xQn║ ( 2(-(Q)n which points out the uniformity of the convergence.
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