Back

Publications of Udrea PĂUN:

 Research Papers

1.
Finite weakly ergodic Markov chains which are locally or globally strongly ergodic. Stud. Cerc. Mat. 49 (1997), 355-363. (Romanian)  
2.
Weakly ergodic classes of states, I. Stud. Cerc. Mat. 50 (1998), 409-415.  
3.
Weakly ergodic classes of states, II. Math. Rep. (Bucur.) 1(51) (1999), 117-121.  
4.
A generalization of a theorem of Hajnal. Rev. Roumaine Pures Appl. 45 (2000), 487-494.  
5.
Uniformly weakly ergodic classes. Rev. Roumaine Pures Appl. 45 (2000), 983-991.  
6.
Strongly ergodic classes. Rev. Roumaine Pures Appl. 47 (2002), 373-384.  
7.
Uniformly strongly ergodic classes. Rev. Roumaine Pures Appl. 47 (2002), 485-497.  
8.
Applications of the ergodicity coefficient of Dobrushin to finite Markov chains. Math. Rep. (Bucur.) 3(53) (2001), 257-265.  
9.
Ergodic theorems for finite Markov chains. Math. Rep. (Bucur.) 3(53) (2001), 383-390.  
10.
A class of ergodicity coefficients, and applications. Math. Rep. (Bucur.) 4(54) (2002), 225-232.  
11.
Bounds for the nontrivial eigenvalues of stochastic matrices: a local approach. Math. Rep. (Bucur.) 6(56) (2004), 93-104.  
12.
New classes of ergodicity coefficients, and applications. Math. Rep. (Bucur.) 6(56) (2004), 141-158.  
13.
Weak and uniform weak Δ-ergodicity for [Δ]-groupable finite Markov chains. Math. Rep. (Bucur.) 6(56) (2004), 275-293.  
14.
Blocks method in finite Markov chain theory. Rev. Roumaine Pures Appl. 50 (2005), 205-236.  
15.
Ergodicity coefficients of several matrices. Math. Rep. (Bucur.) 7(57) (2005), 125-148.  
16.
General Δ-ergodic theory of finite Markov chains. Math. Rep. (Bucur.) 8(58) (2006), 83-117.  
17.
General Δ-ergodic theory: Δ-stability, basis, and new results. Math. Rep. (Bucur.) 8(58) (2006), 219-238.  
18.
Perturbed finite Markov chains. Math. Rep. (Bucur.) 9(59) (2007), 183-210.  
19.
Δ-ergodic theory and simulated annealing. Math. Rep. (Bucur.) 9(59) (2007), 279-303.  
20.
General Δ-ergodic theory: an extension. Rev. Roumaine Math. Pures Appl. 53 (2008), 209-226.  
21.
Δ-ergodic theory and reliability theory. Math. Rep. (Bucur.) 10(60) (2008), 73-95.  
22.
What do we need for simulated annealing? Math. Rep. (Bucur.) 11(61) (2009), 231-247.  
23.
Ergodicity coefficients of several matrices: new results and applications. Rev. Roumaine Math. Pures Appl. 55 (2010), 53-77.  
24.
General Δ-ergodic theory, with some results on simulated annealing. Math. Rep. (Bucur.) 13(63) (2011), 171-196.  
25.
GΔ12 in action. Rev. Roumaine Math. Pures Appl. 55 (2010), 387–406.  
26.
A hybrid Metropolis-Hastings chain. Rev. Roumaine Math. Pures Appl. 56 (2011), 207-228.  
27.
P(Xs ∈ As, Xs+1 ∈ As+1, ..., Xt ∈ At) in the Markov chain case: from an upper bound to a method. Rev. Roumaine Math. Pures Appl. 57 (2012), 145-158.  
28.
Waiting time random variables: upper bounds. Markov Process. Related Fields 19 (2013), 791-818. Abstract.  
29.
Other results on the Markovian inequality P(Xs ∈ As, Xs+1 ∈ As+1, ..., Xt ∈ At)≤ ᾱ(Qs,t). Rev. Roumaine Math. Pures Appl. 61 (2016), 157-183.  
30.
G method in action: from exact sampling to approximate one. Rev. Roumaine Math. Pures Appl. 62 (2017), 413-452.  
31.
G method in action: fast exact sampling from set of permutations of order n according to Mallows model through Cayley metric. Braz. J. Probab. Stat. 31 (2017), 338-352.  
32.
G method in action: fast exact sampling from set of permutations of order n according to Mallows model through Kendall metric. Rev. Roumaine Math. Pures Appl. 63 (2018), 259-280.  
33.
G method in action: normalization constant, important probabilities, and fast exact sampling for Potts model on trees. Rev. Roumaine Math. Pures Appl. 65 (2020), 103-130.  
34.
A Gibbs sampler in a generalized sense. An. Univ. Craiova Ser. Mat. Inform. 43 (2016), 62-71.  
35.
A Gibbs sampler in a generalized sense, II. An. Univ. Craiova Ser. Mat. Inform. 45 (2018), 103-121.  
36.
Ewens distribution on Sn is a wavy probability distribution with respect to n partitions. An. Univ. Craiova Ser. Mat. Inform. 47 (2020), 1-24.  

Back