1.

Finite weakly ergodic Markov chains which are locally or globally strongly ergodic. Stud. Cerc. Mat. 49 (1997), 355363. (Romanian) 
2.

Weakly ergodic classes of states, I. Stud. Cerc. Mat. 50 (1998), 409415. 
3.

Weakly ergodic classes of states, II. Math. Rep. (Bucur.) 1(51) (1999), 117121. 
4.

A generalization of a theorem of Hajnal. Rev. Roumaine Pures Appl. 45 (2000), 487494. 
5.

Uniformly weakly ergodic classes. Rev. Roumaine Pures Appl. 45 (2000), 983991. 
6.

Strongly ergodic classes. Rev. Roumaine Pures Appl. 47 (2002), 373384. 
7.

Uniformly strongly ergodic classes. Rev. Roumaine Pures Appl. 47 (2002), 485497. 
8.

Applications of the ergodicity coefficient of Dobrushin to finite Markov chains. Math. Rep. (Bucur.) 3(53) (2001), 257265. 
9.

Ergodic theorems for finite Markov chains. Math. Rep. (Bucur.) 3(53) (2001), 383390. 
10.

A class of ergodicity coefficients, and applications. Math. Rep. (Bucur.) 4(54) (2002), 225232. 
11.

Bounds for the nontrivial eigenvalues of stochastic matrices: a local approach. Math. Rep. (Bucur.) 6(56) (2004), 93104. 
12.

New classes of ergodicity coefficients, and applications. Math. Rep. (Bucur.) 6(56) (2004), 141158. 
13.

Weak and uniform weak Δergodicity for [Δ]groupable finite Markov chains.
Math. Rep. (Bucur.) 6(56) (2004), 275293. 
14.

Blocks method in finite Markov chain theory. Rev. Roumaine Pures Appl. 50 (2005), 205236. 
15.

Ergodicity coefficients of several matrices. Math. Rep. (Bucur.) 7(57) (2005),
125148. 
16.

General Δergodic theory of finite Markov chains. Math. Rep. (Bucur.) 8(58) (2006), 83117. 
17.

General Δergodic theory: Δstability, basis, and new results. Math. Rep. (Bucur.) 8(58)
(2006), 219238. 
18.

Perturbed finite Markov chains. Math. Rep. (Bucur.) 9(59) (2007), 183210. 
19.

Δergodic theory and simulated annealing. Math. Rep. (Bucur.) 9(59) (2007),
279303. 
20.

General Δergodic theory: an extension. Rev. Roumaine Math. Pures Appl. 53 (2008), 209226. 
21.

Δergodic theory and reliability theory. Math. Rep. (Bucur.) 10(60) (2008),
7395. 
22.

What do we need for simulated annealing? Math. Rep. (Bucur.) 11(61) (2009), 231247. 
23.

Ergodicity coefficients of several matrices: new results and applications. Rev. Roumaine Math. Pures Appl. 55 (2010), 5377. 
24.

General Δergodic theory, with some results on simulated annealing. Math. Rep. (Bucur.) 13(63) (2011), 171196. 
25.

G_{Δ1,Δ2}
in action. Rev. Roumaine Math. Pures Appl. 55 (2010), 387–406. 
26.

A hybrid MetropolisHastings chain. Rev. Roumaine Math. Pures Appl. 56 (2011), 207228. 
27.

P(X_{s} ∈ A_{s}, X_{s+1} ∈ A_{s+1}, ..., X_{t} ∈ A_{t}) in the Markov chain case: from an upper bound to a method. Rev. Roumaine Math. Pures Appl. 57 (2012), 145158. 
28.

Waiting time random variables: upper bounds. Markov Process. Related Fields 19 (2013), 791818. Abstract. 
29.

Other results on the Markovian inequality P(X_{s} ∈ A_{s}, X_{s+1} ∈ A_{s+1}, ..., X_{t} ∈ A_{t})≤ ᾱ(Q_{s},_{t}). Rev. Roumaine Math. Pures Appl. 61 (2016), 157183. 
30.

G method in action: from exact sampling to approximate one. Rev. Roumaine Math. Pures Appl. 62 (2017), 413452. 
31.

G method in action: fast exact sampling from set of permutations of order n according to Mallows model through Cayley metric. Braz. J. Probab. Stat. 31 (2017), 338352. 
32.

G method in action: fast exact sampling from set of permutations of order n according to Mallows model through Kendall metric. Rev. Roumaine Math. Pures Appl. 63 (2018), 259280. 
33.

G method in action: normalization constant, important probabilities, and fast exact sampling for Potts model on trees. Rev. Roumaine Math. Pures Appl. 65 (2020), 103130. 
34.

A Gibbs sampler in a generalized sense. An. Univ. Craiova Ser. Mat. Inform. 43 (2016), 6271. 
35.

A Gibbs sampler in a generalized sense, II. An. Univ. Craiova Ser. Mat. Inform. 45 (2018), 103121. 
36.

Ewens distribution on S_{n} is a wavy probability distribution with respect
to n partitions. An. Univ. Craiova Ser. Mat. Inform. 47 (2020), 124. 